


Introduction

Targeted Next Generation Sequencing (NGS) is the primary assay for interrogation of variants in tumors, in molecular laboratories. In samples with limited amount of tumor material, NGS libraries that use amplification methodologies have been successfully sequenced for identification of targetable variants. However, total DNA input, PCR artifacts, compromised DNA quality, turn-aroundtime and ease-of-use, are factors that hamper the universal adoption of NGS assays in routine diagnostics. We evaluated the **ONCOReveal panel with single tube Stem-Loop Inhibition** Mediated Amplification (SLIMamp) technology (Pillar Biosciences) for accuracy and sensitivity of detection of variants harbored in solid tumors.

Methods

Fifty-six previously tested FFPE samples harboring 26 different clinically relevant variants present in 9 genes were included in the evaluation. Variants present were previously detected using either, TruSeq Amplicon Cancer Panel (Illumina) (N=48) or Sanger sequencing (N=8). 6/56 samples were wildtype. Sensitivity studies ranging from 2.5 ng – 20 ng input DNA, were performed with 3 samples that harbored clinically relevant variants. NGS libraries, using the ONCOReveal Multi-Cancer Panel (Pillar Biosciences) were prepared with DNA input ranging from 2-90 ng. For each run, up to 24 samples were normalized, pooled and run using the MiSeq reagent kit V2 (Illumina). Data analysis including sequence alignment, variant calling and annotation was performed using FASTQ files, with the Pillar Variant Analysis Toolkit (PiVAT). FASTQ files were also analyzed on NextGENE for comparison.

Schematic of SLIMamp technology used in the ONCOReveal assay: Increased specificity is obtained by inhibition of amplification of the stem-loop structure.

- quality control metrics used for analysis. Three samples failed to yield sequences in both assays.
- Targeted alterations in the samples, included missense variants (N=35), indels (N=11) and a splice variant.

Single-vial Amplification Based NGS with Rapid Turn-Around-Time for **Interrogation of Variants in Tumors**

Subit Barua¹, Carlos Pagan¹, Vaishali Hodel¹, Minjeong Ko¹, Erin Petrelli², Susan Hsiao¹, Mahesh Mansukhani¹ & Helen Fernandes¹ ¹Laboratory of Personalized Genomic Medicine, Department of Pathology and Cell Biology, Columbia University Medical Center, NY.² Pillar Biosciences, Natick MA.

Accuracy

	VARIANTS(TruSeq)	MAF(%)	VARIANTS(ONCOReveal)	MAF(%)
1	BRAF D449E	18	BRAF D449E	22
2	BRAF V600E	5	BRAF V600E	6.3
3	BRAF V600E	3	BRAF V600E	4.3
4	BRAF V600E	1.6	BRAF V600E	1.5
5	BRAF V600E	10	BRAF V600E	12
6	EGFR E745_A750del12	28	EGFR E745_A750del12	30
7	EGFR E745_A750del12	21	EGFR E745_A750del12	17
8	EGFR E746_A750del15	53	EGFR E746_A750del15	37
9	EGFR E746_A750del15	85	EGFR E746_A750del15	82
10	EGFR E746_A750del15	35	EGFR E746_A750del15	36
	EGFR E746_A750del15	Sanger	EGFR P747_S752del18	21
		3.2	EGFR P747_S752del18	1.4
	EGFR E746_S752delinsV	54	EGFR E746_S752delinsV	46
	EGFR L858R	73	EGFR L858R	75
	EGFR L858R	24	EGFR L858R	20
	EGFR L858R	36	EGFR L858R	33
	EGFR L858R	9	EGFR L858R	9.1
	KIT A502_Y503dup	35	KIT A502_Y503dup	38
	KIT W557_K558del	52	KIT W557_K558del	63
	KRAS G12C	27	KRAS G12C	27
	KRAS G12C KRAS G12C	- 27		6
			KRAS G12C	
	KRAS G12C	34	KRAS G12C	34
	KRAS G12C	16	KRAS G12C	15
	KRAS G12C	11	KRAS G12C	10
	KRAS G12D	36	KRAS G12D	34
	KRAS G12D	36	KRAS G12D	37
	KRAS G12D	29	KRAS G12D	33
	KRAS G12D	40	KRAS G12D	39
	KRAS G12D	25	KRAS G12D	27
	KRAS G13D	22	KRAS G13D	21
	KRAS G13D	18	KRAS G13D	20
	KRAS G12F	44	KRAS G12F	45
33	KRAS G12R	31	KRAS G12R	29
34	KRAS G12S	Sanger	KRAS G12S	44
35	KRAS G12V	Sanger	KRAS G12V	48
36	KRAS G12V	Sanger	KRAS G12V	16
37	KRAS G12V	12	KRAS G12V	14
38	KRAS V14I	8	KRAS V14I	7
39	MET c.3082 +2 T>A, p.?	70	MET c.3082 +2 T>A, p.?	71
40	NRAS Q61K	19	NRAS Q61K	40
41	NRAS Q61R	75	NRAS Q61K	78
42	PIK3CA E545K	36	PIK3CA E545K	33
	PIK3CA H1047R	6	PIK3CA H1047R	5.4
	STK11 D343N	30	STK11 D343N	33
	STK11 K48*	6	WILDTYPE	
	STK11 c.592_597 +5 delinsA	27	STK11 c.592_597 +5 delin:	19
	TP53 V173M	34	TP53 V173M	46
	WILDTYPE	NGS	WILDTYPE	-0
		NGS		
		NGS		10
		NGS	FLT3 D835Y	18
		Sanger	BRAF G469R 24.4	
	WILDTYPE (EGFR)	Sanger	BAD TOO MANY LOW% V	ARIANTS
	FAILURE	Sanger	FAILURE	
	FAILURE	Sanger	FAILURE	
56	FAILURE	NGS	FAILURE	

or ty-mile of the mity-time samples tested, showed identical results with similar MAF(%) detected in both ONCOReveal and TruSeq assays. The ONCORevel detected 2 additional variants, not interrogated in the Truseq panel.

• All but one of the 53 previously sequenced samples were successfully sequenced using SLIMamp technology. One sample that yielded a wildtype result by Sanger did not pass the NGS

• Samples analyzed with Sanger had insufficient DNA for the TruSeq assay. These samples were successfully sequenced using the ONCOReveal assay.

• The mutant allele fraction (MAF) percentage in the samples, ranged from 3% to 80%. and showed excellent correlation (R²=0.94). • The "on target" percentage of the ONCOReveal assay was >99% and average coverage obtained across the samples was 3731X.

• Sensitivity studies demonstrated that missense variants with MAF of 3% or more were reliably detected at 2.5 ng input DNA.

Results

interpretation of genomic alterations

The simplicity of a single-vial library preparation coupled with a rapid turnaround-time of 3-4 days from sample to answer, allows for viable implementation of SLIMamp technology in molecular laboratories.