ONCO/RevealTM Lung and Colon Cancer Panel

Library Preparation User Guide

FOR RESEARCH USE ONLY

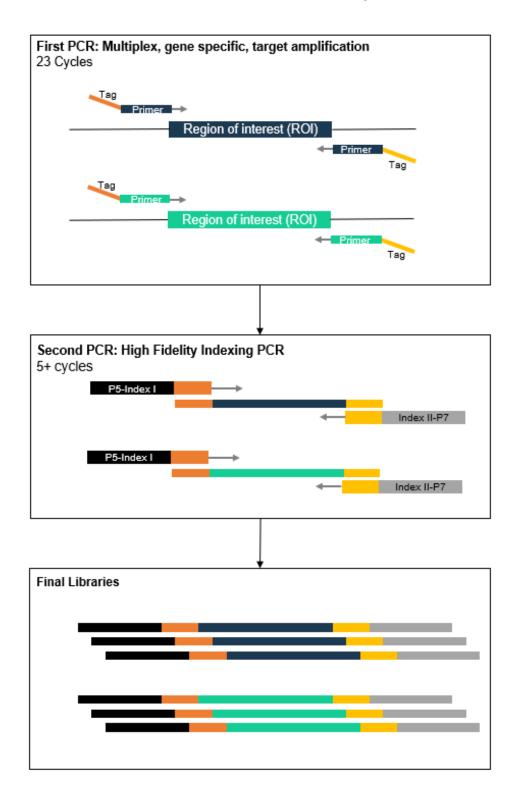
Table of Contents

INTRODUCTION	2
How Does the ONCO/Reveal panel Work?	2
REVISION HISTORY	4
GETTING STARTED	5
Components of the ONCO/Reveal Lung and Colon Cancer Panel	5
ONCO/Reveal Lung and Colon Cancer Panel Indexing Kits	5
User-supplied Reagents	6
Compatible MiSeq Reagent Kits	6
Consumables	6
Equipment Requirements	7
BEST PRACTICES	8
ONCO/Reveal Lung and Colon Cancer Panel Workflow	9
DNA INPUT INFORMATION	10
LIBRARY PREPARATION PROTOCOL	10

Gene-specific PCR: Amplify Genomic DNA Targets10Purify the Gene-specific PCR Product14Indexing PCR: Amplify the Libraries16Purify the Libraries19Qubit Quantitation of Purified Libraries22Prepare Diluted Libraries for Sequencing on the MiSeq24

Pillar Biosciences pillar-biosciences.com version 1.6.0

INTRODUCTION


The ONCO/Reveal[™] Lung and Colon Cancer Panel utilizes SLIMamp® (stem-loop inhibition mediated amplification) to allow researchers to amplify regions of interest in a simple, multiplex reaction for subsequent sequencing on a sequencer using a paired-end read length of 150 (2x150). The ONCO/Reveal Lung and Colon Cancer Panel contains numerous gene regions of interest for researchers looking to explore the genetic sequences of both germline and formalin-fixed paraffinembedded (FFPE) DNA from lung cancer and colon cancer samples.

The work flow of the ONCO/Reveal Lung and Colon Cancer Panel can be performed and loaded onto the sequencing instrument by researchers within one day. The protocol also contains numerous stopping points for users who have time limitations.

How Does the ONCO/Reveal panel Work?

A pair of DNA oligos was designed for each region of interest, or hot spot. Each region is amplified in the first round of gene-specific PCR (GS-PCR) and subsequently purified via size selection. After purification, a second round of PCR adds index adaptors and P5 and P7 sequences to each library for sample tracking and sequencing on Illumina's flow cells. Those products are further purified and sequenced (Figure 1).

Version 1.6.0 Page 2 of 33

Figure 1. Overview of ONCO/Reveal Lung and Colon Cancer library preparation.

Version 1.6.0 Page 3 of 33

REVISION HISTORY

2015-04: User Guide created

2015-05: Revisions to 1.0; Changed workflow image

2015-06: QC gel photos added to 1.1

2015-06: Elution and second PCR protocol revised in 1.1

2015-07: Corrected workflow and amended DNA input recommendations

2016-01: Added MiSeg read length information

2016-05: Added sample sheet preparation information

2016-09: Naming and workflow image updated

2016-11: Minor grammatical edits

2017-03: Figure edits

2017-09: Added information on UDG

2017-11: Editorial changes

2018-05: Updated Indexing PCR description

2019-04: Product Name and document format updated

2019-06: Index primer options and minor grammatical edits

2019-09: Edit index cycling condition to 5 cycles in version 1.5. Also format

changes.

2020-09: Edits to improve consistency and clarity in version 1.6.

Version 1.6.0 Page **4** of **33**

GETTING STARTED

This section describes the necessary equipment, reagents, and consumables needed before performing the protocol.

Components of the ONCO/Reveal Lung and Colon Cancer Panel

Reagent	Use	Storage
Gene-Specific PCR Master Mix (2x)	First PCR	-15° to -25°C
LC oligo pool	First PCR	-15° to -25°C
Indexing PCR Master Mix (2x)	Indexing PCR	-15° to -25°C

ONCO/Reveal Lung and Colon Cancer Panel Indexing Kits

Reagent and Part Number	Use	Area Use	Storage
Illumina TSCA Indexing Primers Kit A, indices AI501-8, AI701-4 (32 combinations - 96 reactions) PN: IDX-AI-1001-96	Indexing PCR	Pre-PCR	-15° to -25°C
Illumina TSCA Indexing Primers Kit B, indices AI501-8, AI705-8 (32 combinations - 96 reactions) PN: IDX-AI-1002-96	Indexing PCR	Pre-PCR	-15° to -25°C
Illumina TSCA Indexing Primers Kit C, indices AI501-8, AI709-12 (32 combinations - 96 reactions) PN: IDX-AI-1003-96	Indexing PCR	Pre-PCR	-15° to -25°C
Illumina TSCA Indexing Primers Kit D, indices AI501-8, AI701-12 (96 combinations - 192 reactions) PN: IDX-AI-1004-192	Indexing PCR	Pre-PCR	-15° to -25°C
Illumina TSCA Indexing Primers Kit E, indices Al501-8, Al701-12 (96 combinations - 384 reactions) PN: IDX-Al-1005-384	Indexing PCR	Pre-PCR	-15° to -25°C

Only one index kit is needed per assay. Multiple options are available to meet your throughput needs.

All reagents in the kit should be used in designated Pre-PCR areas to prevent amplicon contamination. Each area designated for pre- and post-PCR should have dedicated equipment, supplies, and reagents to prevent contamination.

Version 1.6.0 Page **5** of **33**

User-supplied Reagents

Reagent	Area use	Supplier
10 N NaOH or 1 N NaOH	Post-PCR	General lab supplier
Agencourt AMPure XP Beads	Post-PCR	Beckman Coulter, #A63881/ #A63880
Ethanol, 200 proof for molecular biology	Post-PCR	General lab supplier
Nuclease-free water	Pre- and Post- PCR	General lab supplier
Qubit dsDNA High Sensitivity assay kit	Post-PCR	Invitrogen, #Q32851/ #Q32854
Agarose gel, 2% (optional)	Post-PCR	General lab supplier
DNA molecular weight markers (optional)	Post-PCR	General lab supplier
Or Bioanalyzer High Sensitivity DNA Analysis (optional)	Post-PCR	Agilent #5067-4627/ #5067- 4626
10 mM Tris-HCl w/ 0.1% Tween-20, pH 8.5 (optional)	Post-PCR	Teknova, Cat#T7724
Uracil-DNA glycosylase (UDG) (optional)	Pre-PCR	NEB, #M0280S or #M0280L

Compatible MiSeq Reagent Kits

MiSeq reagent kit v2 (300 cycles)	Illumina, #MS-102-2002
MiSeq reagent Micro kit v2 (300 cycles)	Illumina, #MS-103-1002
MiSeq reagent Nano kit v2 (300 cycles)	Illumina, #MS-103-1001
MiSeq reagent kit v3 (600 cycles)	Illumina, #MS-102-3003

Consumables

Item	Area Use	Supplier
1.5 mL microcentrifuge tubes	Pre- and post-PCR	General lab supplier
96-well PCR plates, 0.2 mL	Pre- and post-PCR	Axygen, #6551 or equivalent
Microplate sealing film	Pre- and post-PCR	Axygen, PCR-TS or equivalent
Conical tubes, 15 mL	Pre- and post-PCR	General lab supplier
Conical tubes, 50 mL	Post-PCR	General lab supplier
Low retention, aerosol filter pipette tips	Pre- and post-PCR	General lab supplier
Solution basin (trough or reservoir)	Pre- and post-PCR	Fisher, #13-681-506 or equivalent
Qubit Assay tubes	Post-PCR	Life Technologies, #Q32856

Version 1.6.0 Page **6** of **33**

Equipment Requirements

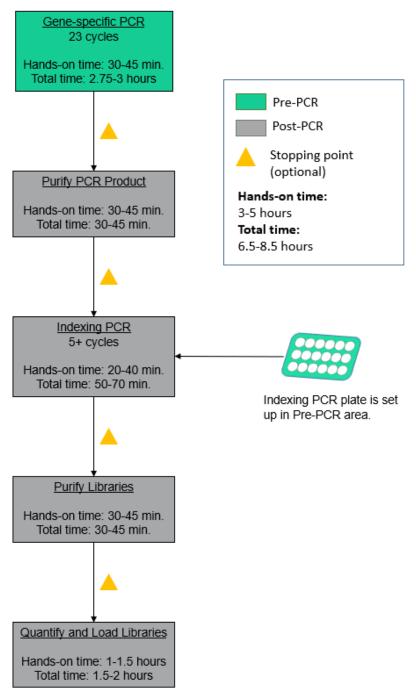
Equipment	Area Use	Supplier
Centrifuge adapted for PCR plates, tabletop	Pre- and post-PCR	General lab supplier
Gel electrophoresis apparatus (optional) or	Post-PCR	General lab supplier
2100 Bioanalyzer Instrument (optional)	Post-PCR	Agilent. #G2939BA
Magnetic stand for 96 wells	Post-PCR	Life Technologies, #12331D/ #12027
Microfuge	Pre- and post-PCR	General lab supplier
Thermal cycler, heated lid capability	Post-PCR	General lab supplier
Pipettes, 0.5-1000 µL capabilities	Pre- and post-PCR	General lab supplier
Qubit Fluorometer	Post-PCR	Invitrogen, #Q33216/Q33218
Vortexer	Pre- and post-PCR	General lab supplier

Other general lab supplies needed to carry out the protocol include laboratory gloves, ice, ice buckets, tube racks, etc.

For reagents, consumables, and equipment required in both pre- and post-PCR processes, dedicated supplies (including gloves, lab coats, etc.) should be located in both areas.

Version 1.6.0 Page 7 of 33

BEST PRACTICES


The following steps are recommended to improve consistency and reduce contamination:

- Work areas: To reduce the risk of contamination from PCR amplicons, supplies should not be moved from one area to another. Separate storage areas (refrigerator, freezer) should also be designated for pre- and post-PCR products.
- Lab cleanliness: To further reduce the possibility of contamination, clean work areas between experiments with laboratory cleaning solution (70% alcohol or freshly-made 10% hypochlorite solution). A periodic cleaning of the floor is also recommended.
- Floor: Items that have fallen to the floor are assumed to be contaminated and should be discarded. Gloves should also be changed after handling a contaminated item. If a sample tube or non-consumable item has fallen and remained capped, thoroughly clean the outside with a laboratory cleaning solution before use (70% alcohol or freshly-made 10% hypochlorite solution).
- Aliquot reagents: Aliquot frozen reagents into smaller volumes to prevent freeze/thaw cycles. For reagents stored at higher temperatures, aliquot from the stock and work from the aliquots to reduce the risk of stock contamination. In the case of contamination, aliquots can help to determine the source of contamination more quickly and easily.
- **Multichannel pipettes:** Use multichannel pipettes for consistency and efficiency among numerous samples.
- **Pipette tips:** Change tips between each sample to prevent cross-contamination. Discard any tips that may have become contaminated due to contact with gloves, lab bench, tube exteriors, etc.
- Open containers and lids: To prevent possible contamination from the air, keep tubes closed when not directly in use, avoid reaching over open containers, and cover plates with seals or lint-free laboratory wipes.

Version 1.6.0 Page **8** of **33**

ONCO/Reveal Lung and Colon Cancer Panel Workflow

The following chart (Figure 2) demonstrates the workflow for the ONCO/Reveal Lung and Colon Cancer Panel protocol.

Figure 2. The workflow can be completed within a day but contains multiple stopping points for users with time constraints.

Version 1.6.0 Page 9 of 33

DNA INPUT INFORMATION

The following protocol includes information for preparing libraries using genomic DNA from tissue or FFPE samples.

The recommended DNA input is 10-80 ng per PCR reaction for both standard genomic DNA and FFPE DNA.

For FFPE samples, it is recommended that Uracil-DNA glycosylase (UDG) be added to the initial gene-specific reaction. The deamination of cytosine to uracil is a common cause of the presence of artificial C>T (or G>A) variants. To reduce such artifacts due to DNA damage in FFPE samples, UDG can be added to the reaction during the initial setup of gene-specific PCR.

LIBRARY PREPARATION PROTOCOL

Hands-on time: 3-5 hours Total time: 5.5-7.75 hours

Gene-specific PCR: Amplify Genomic DNA Targets

Hands-on time: 30-40 minutes

Total time: 2.75-3 hours

The following steps are performed in a pre-PCR area. For this portion of the protocol, have an ice bucket prepared. Keep the Gene-Specific PCR Master Mix (GS PCR MMX) and LC oligo pool on ice.

1. **Prepare a PCR master mix:** Vortex and spin the GS PCR MMX and oligo pool before use. For each PCR reaction, the volume of each component is listed on the next page.

Reagent	Volume (uL) (without UDG)	Volume (uL) (with UDG)
Gene-specific PCR Master Mix	12.5	12.5
LC oligo pool	5.0	5.0
UDG (5 units/uL)	0.0	1.0
Sub-total	17.5	18.5

Note: The Gene-specific PCR Master Mix is viscous. Ensure the mix is fully homogenized before adding other reaction components.

Version 1.6.0 Page **10** of **33**

Vortexing is recommended and will not adversely affect enzyme activity.

2. **Dilute input DNA:** Dilute DNA in nuclease-free water to a final volume of 7.5 µL of diluted DNA* (or 6.5 µL if using UDG). Add the diluted DNA to each sample well in a PCR plate, strip tube, or PCR tube. Add 7.5 µL of nuclease-free water (or 6.5 µL if using UDG) to the no-template control well.

*The DNA concentration can be determined by the Qubit dsDNA BR Assay Kit (Life Technologies, Cat. No. Q32850 or Q32853; Quantitation range 2-1,000 ng) or the Qubit dsDNA HS Assay Kit (Life Technologies, Cat. No. Q32851 or Q32854; Quantitation range 0.2-100 ng).

The recommended DNA input is 10-80 ng per PCR reaction for standard genomic DNA and FFPE DNA. It is recommended that the quality of FFPE DNA be checked by qPCR (i.e. Taqman RNase P Detection Reagents Kit (Life Technologies, Cat. No. 4316831)) or a Bio-analyzer. If the FFPE DNA is not severely degraded, the DNA input can be as little as 2.5 ng. However, if the FFPE DNA is severely degraded, it is recommended to increase the DNA input.

3. **Transfer:** Transfer 17.5 µL (or 18.5 µL with UDG) of the PCR master mix to each well in the PCR plate or tube containing sample.

Reagent	Volume (uL) (without UDG)	Volume (uL) (with UDG)
PCR Master Mix	17.5	18.5
Diluted DNA (or water)	7.5	6.5
Sub-total	25.0	25.0

- 4. **Seal and mix:** Carefully seal the reactions and vortex for 10-15 seconds.
- 5. **Spin:** Briefly spin the reactions to remove any air bubbles from the bottom of the wells and spin down droplets from the seal or side walls.

Version 1.6.0 Page **11** of **33**

6. Perform PCR: Perform the following program with the heated lid on:

Temperature	Time	Number of cycles (without UDG)*	Number of cycles (with UDG)*
37°C	10 min	0	1
95°C	15 min	1	1
95°C	1 min	5	E
60°C	6 min	3	5
95°C	30 sec	18	18
72°C	3 min	10	10
8°C	Hold	1	1

*If multiple sample types are being processed (non-FFPE vs FFPE DNA), reactions with and without UDG can be run simultaneously. The 37°C incubation will not adversely affect the PCR reaction. Therefore, reactions with and without UDG can be run with the same cycling conditions.

IMPORTANT: Do not leave the reactions at $8 \, \mathbb{C}$ overnight. Precipitation may occur when the reactions are incubated at $8 \, \mathbb{C}$ overnight.

STOPPING POINT: The gene-specific PCR reactions may be stored at -20 $^{\circ}$ C.

Version 1.6.0 Page **12** of **33**

Gel Image after Gene-specific PCR

The following image is an example of samples after the first round of PCR using various inputs on a 2% agarose gel.

Version 1.6.0 Page **13** of **33**

Purify the Gene-specific PCR Product

Hands-on time: 30-45 minutes Total time: 30-45 minutes

The following steps are performed in a post-PCR area.

Pre-purification

Warm AMPure beads: Take out Agencourt AMPure XP beads from 4°C and incubate at room temperature for at least 30 minutes before use.

If samples were stored at -20°C, remove from the freezer to thaw to ambient temperature before purification.

IMPORTANT: It is critical that the AMPure beads reach room temperature before performing the purification process. The temperature of the bead solution can alter the purification process.

Gene-specific PCR Purification

- 1. If the samples were stored at -20°C or condensation has formed, briefly spin the samples upon thawing to remove droplets from the side walls. Carefully remove the seal or caps.
- 2. **Mix beads:** Vortex AMPure XP beads thoroughly until all beads are well dispersed.

IMPORTANT: It is critical that the AMPure beads solution is homogeneous before performing the purification process. A non-uniform distribution can affect the purification process.

3. Add water to sample: Add 25 μ L of nuclease-free water to each well or add enough water to bring the volume to 50 μ L.

TIP: Use a trough and multichannel pipette to quickly and easily add the water to each well. The same method can be applied to add the beads in step 4 and washes in steps 7-9.

- 4. **Add beads:** Add 60 μ L beads (1.2x beads if the volume is not currently 50 μ L) to each well. Pipette the mixture up and down 10 times. If bubbles form on the bottom of the wells, briefly the samples and mix again.
- 5. **Bind PCR product to beads:** Incubate the PCR plate for 5 minutes at room temperature.

Version 1.6.0 Page **14** of **33**

TIP: During the incubation time, prepare a 50 mL solution of 70% ethanol by combining 35 mL of ethanol and 15 mL of molecular biology grade water, which will be used to wash the beads in step 8.

- 6. **Separate beads containing PCR product:** Place the samples on a magnetic rack until the solution appears clear, which can take up to 5 minutes.
- 7. **Remove supernatant:** Carefully remove the supernatant from each well without disturbing the beads from the wall of each well.
- 8. **Wash beads:** Leave the samples on the magnetic rack. Add 150 μ L of freshly prepared 70% ethanol to each well without disturbing the beads. Incubate 30 seconds, and then remove the supernatant from each well.

IMPORTANT: Do not allow the ethanol mixture to remain open to the air. The ethanol concentration will change over time, affecting the washing of the beads. Pour only enough solution for each wash.

9. **Second wash:** Repeat step 8 for a second 70% ethanol wash. Remove the supernatant from each well. The unused solution of ethanol can be used to purify the libraries after indexing PCR.

IMPORTANT: Remove trace amounts of ethanol completely from each well. If ethanol drops are attached to the sidewall of some wells, spin the samples in a benchtop centrifuge for 10-15 seconds and use a 10 or $20~\mu$ L tip to remove the remaining solution from wells.

10. **Dry beads:** Keep the samples on the magnetic rack and let the beads air dry at room temperature for 2-5 minutes or until residual ethanol has dried.

IMPORTANT: Do not over-dry the beads. The beads have sufficiently dried when the bead mass has small cracks in the middle. If large cracks have appeared among the entire bead ring or they are flaky, they are over-dried. Beads that are too dry may be difficult to resuspend.

- 11. **Resuspend beads:** Remove the samples from the magnetic rack and resuspend the dried beads in each well using 64 µL nuclease-free water. Gently pipette the suspension up and down 10 times. If bubbles form on the bottom of the wells, briefly spin the samples and mix again.
- 12. Incubate the elution at room temperature for 5 minutes to fully elute the product.

TIP: After resuspending the beads, cover the samples and prepare the reactions for indexing the libraries using the Indexing PCR Master Mix in the Pre-PCR area. Alternately, the purified gene-specific PCR product (on beads) may be stored at -20 °C after elution.

Version 1.6.0 Page **15** of **33**

STOPPING POINT: The purified PCR product may be stored with the beads at -20 $^{\circ}$ C.

Indexing PCR: Amplify the Libraries

Hands-on time: 20-40 minutes Total time: 50-70 minutes

The following steps should be performed in a pre-PCR area. For this portion of the protocol, have an ice bucket prepared. The Indexing PCR Master Mix should be kept on ice.

1. Add indexing primers: For each indexing reaction, add 4 μ L of the appropriate forward and reverse indexing primer to each sample well being used.

Reagent	Volume (µL)
A700 TSCA Index	4.0
A500 TSCA Index	4.0
Total	8.0

2. **Prepare a master mix:** Vortex and spin the Indexing PCR Master Mix before use. To prepare the PCR master mix, combine the Indexing PCR Master Mix and water sufficient for the samples being processed with overage.

Reagent	Volume (µL)
Indexing PCR Master Mix	25.0
Nuclease-free water	11.0
Total	36.0

3. **Transfer:** Transfer 36 µL of master mix to each sample well that contain indices from step 1. To prevent cross-contamination of indices, be sure to change tips between each well.

Reagent	Volume (µL)
A700 and A500 Indices	8.0
PCR master mix	36.0
Total	44.0

Version 1.6.0 Page **16** of **33**

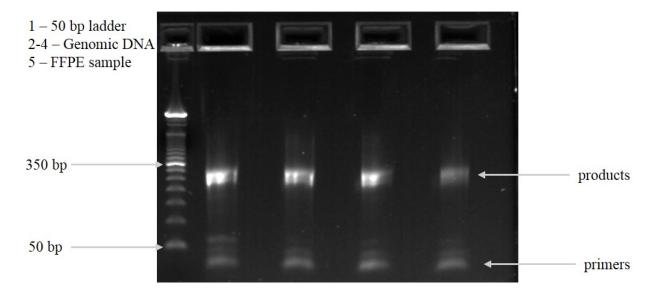
4. Add gene-specific PCR product: The following steps should be performed in a post-PCR area. *Important*: Cover or seal the reactions before transferring from the pre-PCR area to the post-PCR area. Aliquot 6 µL of the separated supernatant (Gene-specific PCR product) into the appropriate wells containing indices and PCR Master Mix, being sure that no beads are transferred.

Reagent	Volume (µL)
Indices and master mix	44.0
Gene-specific PCR product	6.0
Total	50.0

- 5. **Mix and spin:** Pulse vortex the sealed reactions on a medium setting for 5-10 seconds to mix. Briefly spin down the reactions to remove any bubbles within the reaction solutions.
- 6. **Perform PCR:** Perform the following program with the heated lid on:

Temperature	Time	Number of Cycles
95°C	2 min	1
95°C	30 sec	
66°C	30 sec	5*
72°C	60 sec	
72°C	5 minutes	1
8°C	Hold	1

^{*}Additional indexing PCR cycles can be performed if final library yield is low.


STOPPING POINT: The indexed libraries may be stored at -20 $^{\circ}$ C.

TIP: Thaw the MiSeq reagent cartridge in a water bath or overnight at $4 \, \text{C}$ per the MiSeq Reagent Kit Reagent Prep Guide and prepare the sample sheet during indexing PCR (see page 28).

Version 1.6.0 Page 17 of 33

Quality Control

The following image is an example of samples after indexing PCR on a 2% agarose gel.

Version 1.6.0 Page **18** of **33**

Purify the Libraries

Hands-on time: 30-45 minutes Total time: 30-45 minutes

Pre-purification

Keep Agencourt AMPure XP beads at room temperature while the indexing PCR is being performed unless samples are going to be stored at -20°C.

If samples were stored at -20°C, remove from the freezer to thaw to ambient temperature before purification. Remove Agencourt AMPure XP beads from 4°C and incubate at room temperature for at least 30 minutes before use.

Library Purification

The following steps should be performed in a post-PCR area.

- 1. If the samples were stored at -20°C or condensation has formed, briefly spin the samples once thawed to remove droplets from the side walls. Carefully remove the seal or caps.
- 2. **Mix beads:** Vortex AMPure XP beads thoroughly until all beads are well dispersed.

IMPORTANT: It is critical that the AMPure beads solution is homogeneous before performing the purification process. A non-uniform distribution can affect the purification process.

3. Add beads: Add 50 μ L beads (1.0x beads if reaction is not at 50 μ L) to each well. Pipette the mixture up and down 10 times. If bubbles form on the bottom of the wells, briefly spin the samples and mix again.

TIP: Use a trough and multichannel pipette to quickly and easily add the beads to each well. The same method can be applied to the washes in steps 6-8.

- 4. **Bind libraries to beads:** Incubate the samples for 5 minutes at room temperature to bind the libraries to the beads.
- 5. **Separate libraries on beads:** Place the samples on a magnetic rack until the solution appears clear, which can take up to 5 minutes.
- 6. **Remove supernatant:** Carefully remove the supernatant from each well without disturbing the beads from the wall of each well.
- 7. **Wash beads:** Leave the samples on the magnetic rack. Add 150 µL of freshly-prepared 70% ethanol to each well without disturbing the beads. Incubate 30 seconds, and then remove the supernatant from each well.

Version 1.6.0 Page **19** of **33**

IMPORTANT: Do not allow the ethanol mixture to remain open to the air. The ethanol concentration will change over time, affecting the washing of the beads. Pour only enough solution for each wash.

8. **Second wash:** Repeat step 7 for a second 70% ethanol wash. Remove the supernatant from each well.

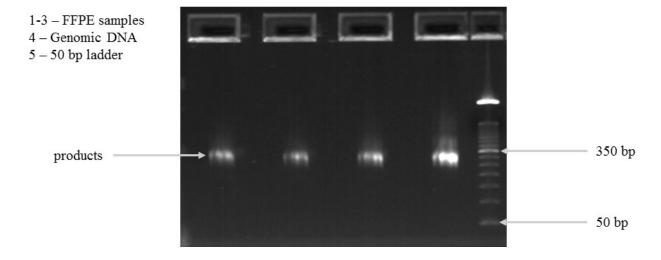
IMPORTANT: Remove trace amounts of ethanol completely from each well. If ethanol drops are attached to the sidewall of some wells, spin the samples briefly and use a 10 or 20 μ L tip to remove the remaining solution from wells.

9. **Dry beads:** Let the beads air dry at room temperature for 2-5 minutes.

IMPORTANT: Do not over-dry the beads. The beads have sufficiently dried when the bead mass has small cracks in the middle. If large cracks have appeared among the entire bead ring or they are flaky, they are over-dried. Beads that are too dry may be difficult to resuspend.

- 10. **Resuspend beads:** Remove the samples from the magnetic rack, and resuspend the dried beads in each well using 32 µL nuclease-free water. Gently pipette the beads suspension up and down 10 times. If bubbles form on the bottom of the wells, briefly spin and mix again.
- 11. **Elute libraries:** Incubate the resuspended beads at room temperature for 5 minutes to elute the final libraries.
- 12. **Separate libraries from beads:** Place the elutions on the magnetic rack at room temperature until the solution appears clear. Transfer 30 µL of clear supernatant from each well of the PCR plate or tubes to the corresponding well of a new plate or tube.

TIP: During the incubation and magnetic separation of the beads, cover the samples and prepare the solutions needed for quantitation in the next section.


13. Analyze an aliquot of each library per the instructions in the next section.

STOPPING POINT: The purified libraries may be stored at $4 \, \mathbb{C}$ for up to 3 days. Store the purified libraries at -20 \mathbb{C} for longer-term storage.

Version 1.6.0 Page **20** of **33**

Quality Control

The following image is an example of final libraries after both rounds of PCR and purification on a 2% agarose gel.

Version 1.6.0 Page **21** of **33**

Qubit Quantitation of Purified Libraries

Hands-on time: 30-45 minutes Total time: 30-45 minutes

The following steps should be performed in a post-PCR area.

1. **Prepare Qubit working solution:** Dilute the Qubit dsDNA HS reagent 1:200 in Qubit dsDNA HS buffer. Vortex briefly to mix Qubit working solution. For example, 2000 μ L is sufficient buffer for 10 readings (8 samples + 2 standards). Combine 1990 μ L of Qubit dsDNA HS buffer and 10 μ L HS reagent. Add reagent overage appropriately.

IMPORTANT: Fluorescent dyes are sensitive to light. Protect the Qubit working solution from light.

- 2. **Label tubes:** Set up 0.5 mL Qubit tubes for standards and samples. Label the tube lids.
- 3. **Prepare standards:** Transfer 190 μ L of Qubit working solution into two tubes for standard 1 and standard 2, and then add 10 μ L of each standard to the corresponding tube.

IMPORTANT: New standards should be prepared with the samples. Do not re-use standards from previous experiments.

- 4. **Prepare samples:** Transfer 198 μ L of Qubit working solution to each tube, and then add 2 μ L of each sample to the tube (1:100 dilution).
- 5. Mix and spin: Mix the tubes by vortexing and then spinning the tubes briefly.
- 6. Incubate the tubes at room temperature for 2 minutes.
- 7. **Measure concentration:** Measure the concentration of each sample on the Qubit Fluorometer per the Qubit User Guide. Use the dsDNA High Sensitivity assay to read standards 1 and 2 followed by the samples.
 - a. If any sample concentrations are above the linear range of the instrument, prepare a new dilution using 199 μ L Qubit working solution and 1 μ L sample (1:200 dilution). Repeat steps 5-7.
- 8. Calculate concentration: 1 ng/µL of library is equal to **5 nM**. Example calculation is below. Adjust dilution factor accordingly.

2 uL of library + 198 uL Qubit working solution:

$$\frac{Qubit \ reading \ \left(\frac{ng}{mL}\right)}{1,000} \ x \ dilution \ factor \ (100) \ x \ conversion \ factor \ (5) = nM$$

Version 1.6.0 Page **22** of **33**

STOPPING POINT: The undiluted libraries may be stored at $4 \, \text{C}$ for up to 3 days. Store libraries at $-20 \, \text{C}$ for long-term storage.

Normalization and Pooling

Hands-on time: 30-45 minutes Total time: 30-45 minutes

The following steps should be prepared in a post-PCR area.

1. **Normalize libraries to 5 nM:** Dilute an aliquot (i.e. 4 μL) of each sample library to 5 nM using nuclease-free water or 10 mM Tris-Cl with 0.1% Tween-20, pH 8.5. An example calculation is as follows:

$$\frac{\textit{Library concentration (nM) x 4 uL library}}{5 \, nM} = \textit{final volume of library}$$

Final volume of library -4 uL library = volume of diluent

STOPPING POINT: The normalized library products can be stored at 4°C overnight for loading the next day. For longer storage, the normalized samples can be stored at -20°C.

- 2. **Mix and spin:** Mix the 5 nM libraries thoroughly by vortexing followed by spinning briefly.
- 3. **Prepare library mix:** Label a new 1.5 mL microtube for the library mix. Prepare a 5 nM mixture of libraries by combining each library at equal volume (i.e. mixing 5 μ L of each 5 nM library). Gently pipette the entire solution up and down 10 times to mix thoroughly. The mixture can also be quickly vortexed and spun.
- 4. Quantify library pool (recommended): It is recommended that the library mix be quantitated using Qubit or another library quantitation method (qPCR) to ensure the mix is at 5 nM (± 10%) to prevent over- or underclustering on the MiSeq. If the final dilution is not 5 nM (±10%), adjust the dilution for loading the sequencer accordingly to obtain the desired concentration.

Version 1.6.0 Page **23** of **33**

Prepare Diluted Libraries for Sequencing on the MiSea

Hands-on time: 30-70 minutes Total time: 30-70 minutes

The following steps should be performed in a post-PCR area. For this portion of the protocol, have an ice bucket prepared.

Depending on the number of samples, samples can be multiplexed and sequenced using either MiSeq v2 or v3 chemistry. Please choose the appropriate workflow based on the number of samples and the desired sequencing depth.

The following table provides a general guideline for the performance of the ONCO/Reveal Lung and Colon Cancer Panel.

	Kit	Cycles	Estimated PE reads	Est. Mean amplicon coverage (x) ^a	Est. Min. amplicon coverage (x) ^b	Estimated PE reads/sample	Est. Maximum # libraries
No	no v2	2x150	2 Million	2000	300	500,000	4
Mi	cro v2	2x150	8 Million	2000	300	470,500	17
	v2	2x150	30 Million	2000	300	461,500	65
	v3	2x150	50 Million	2200	330	520,800	96

^a In paired end sequencing, each amplicon is sequenced from both the forward and reverse directions, generating two reads. Therefore, an amplicon coverage of 1x requires a read coverage of 2x.

Version 1.6.0 Page **24** of **33**

^b The minimum coverage estimate is based on obtaining a minimum coverage of 15% of the mean amplicon coverage.

Sequencing Using v2 Chemistry

For running a MiSeq kit using v2 chemistry (MiSeq Nano v2, MiSeq Micro v2, or MiSeq v2 kit), dilute libraries to **5 nM.** The final concentration of the libraries for sequencing is **15 pM**.

The following steps can be found in greater detail in Illumina's "Preparing Libraries for Sequencing on the MiSeq" (part # 15039740).

1. **Prepare 0.2 N NaOH:** Label a new 1.5 mL microtube for 0.2 N NaOH. Prepare the NaOH by combining 800 µL nuclease-free water with 200 µL of 1 N NaOH. Vortex the solution to mix.

Alternately, prepare a 1 N NaOH solution by combining 500 μ L 10 N NaOH into 4.5 mL of nuclease-free water. Vortex the solution to mix. If 1 N NaOH has not been prepared within the last week from a 10 N solution, prepare a new 1 N NaOH solution.

- 2. **Denature the library mix:** Label a new microtube for the denatured, 25 pM library mix.
 - a. Denature the library mix by combining 5 μ L of the library mix and 5 μ L of the freshly prepared 0.2 N NaOH.
 - b. Vortex the solution thoroughly for 10 seconds and centrifuge the solution in a microfuge for 1 minute.
 - c. Let the solution stand at room temperature for 5 minutes.
 - d. Add 990 µL of Illumina's HT1 solution to the denatured library mix.
 - e. Invert the mixture several times, spin briefly, and place on ice.
- 3. **Dilute to 15 pM library mix:** Label a new 1.5 mL microtube for the 15 pM library mix. Combine 360 µL of the 25 pM library mix (step 2) with 240 µL of Illumina's HT1 solution. Invert the mixture several times, spin briefly, and place on ice.
- Combine library mix and PhiX control: Label a new 1.5 mL microtube for the mixture that will be loaded. Combine 594 μL of the 15 pM library mix (step 3) with 6 μL of a 12.5 pM PhiX library control. Briefly vortex, spin, and place on ice.
- 5. **Load MiSeq cartridge:** Using a clean 1000 µL tip, puncture the foil cap above the sample loading tube on the MiSeq cartridge. Load the 600 µL library mix and PhiX mixture (step 4) into the cartridge and ensure the solution has reached the bottom of the tube by lightly tapping the tube if liquid remains on the side wall or there is an air bubble at the bottom of the tube.
- 6. **Run the MiSeq:** Run the libraries on the MiSeq per the manufacturer's instructions using a paired-end read length of 150 (2x150): "MiSeq System

Version 1.6.0 Page **25** of **33**

- User Guide" (part #15027617). For instructions on preparing a sample sheet for the MiSeq, see page 28.
- 7. Store diluted libraries and mixtures at -20°C for long-term storage.

Sequencing Using v3 Chemistry

For v3 chemistry (MiSeq v3 kit), dilute libraries to **5 nM**. The final concentration of the libraries for sequencing is **25 pM**.

The following steps can be found in greater detail in Illumina's "Preparing Libraries for Sequencing on the MiSeq" (part # 15039740).

1. **Prepare 0.2 N NaOH:** Label a new 1.5 mL microtube for 0.2 N NaOH. Prepare the NaOH by combining 800 µL nuclease-free water with 200 µL of 1 N NaOH. Vortex the solution to mix.

Alternately, prepare a 1 N NaOH solution by combining 500 μ L 10 N NaOH into 4.5 mL of nuclease-free water. Vortex the solution to mix. If 1 N NaOH has not been prepared within the last week from a 10 N solution, prepare a new 1 N NaOH solution.

- 2. **Denature the library mix:** Label a new microtube for the denatured, 25 pM library mix.
 - a. Denature the library mix by combining 5 μ L of the library mix and 5 μ L of the freshly prepared 0.2 N NaOH.
 - b. Vortex the solution thoroughly for 10 seconds and centrifuge the solution in a microfuge for 1 minute.
 - c. Let the solution stand at room temperature for 5 minutes.
 - d. Add 990 µL of Illumina's HT1 solution to the denatured library mix.
 - e. Invert the mixture several times, spin briefly, and place on ice.
- 3. **Combine library mix and PhiX control:** Label a new 1.5 mL microtube for the mixture that will be loaded. Combine 594 µL of the 25 pM library mix (step 2) with 6 µL of a 20 pM PhiX library control. Briefly vortex, spin, and place on ice.
- 4. **Load MiSeq cartridge:** Using a clean 1000 μL tip, puncture the foil cap above the sample loading tube on the MiSeq cartridge. Load the 600 μL library mix and PhiX mixture (step 3) into the cartridge and ensure the solution has reached the bottom of the tube by lightly tapping the tube if liquid remains on the side wall or there is an air bubble at the bottom of the tube.

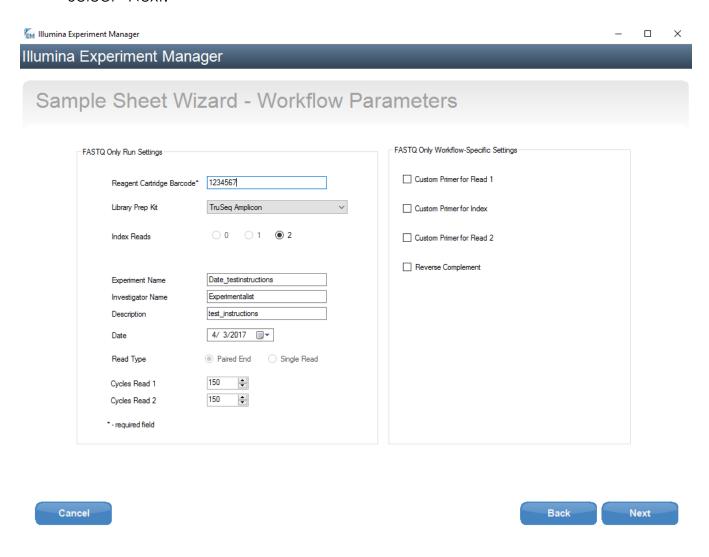
Version 1.6.0 Page **26** of **33**

- 5. **Run the MiSeq:** Run the libraries on the MiSeq per the manufacturer's instructions using a paired-end read length of 150 (2x150): "MiSeq System User Guide" (part #15027617). For instructions on preparing a sample sheet for the MiSeq, see page 8.
- 6. Store diluted libraries and mixtures at -20°C for long-term storage.

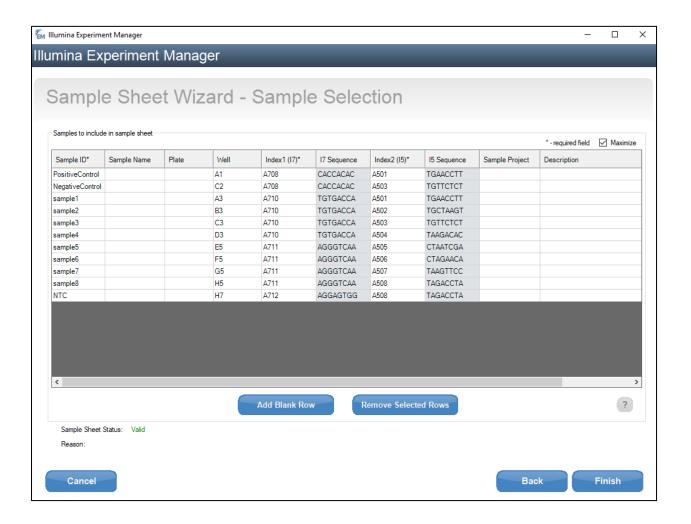
Version 1.6.0 Page **27** of **33**

Preparing a Sample Sheet Using Illumina Experiment Manager

In the Illumina Experiment Manager, prepare a sample sheet that contains the information for the samples that are being loaded.


For best practice, prepare the sample sheet prior to loading the MiSeq cartridge. If an error has been made during indexing PCR where samples have the same indices, it can be remedied before loading the samples on the MiSeq.

- 1. Open Illumina Experiment Manager, select "Create Sample Sheet."
- 2. **Instrument selection:** Select "MiSeq" and "Next."
- 3. **Application selection:** Under "Category," select "Other." Under "Select Application," select "FASTQ only" and "Next."


Version 1.6.0 Page **28** of **33**

- 4. **Reagent barcode:** Enter the reagent barcode number found on the cartridge being loaded onto the instrument. Example: For MSXXXXXXXX300v2 or MSXXXXXXX-600v3, enter the 7-digit number following MS.
- 5. Library Prep Kit: Use the menu to select "TruSeq Amplicon."
- 6. Index Reads: Select to perform two index reads if not already selected.
- 7. **Experiment Name, Investigator Name, Description:** These fields can be filled out by the user per the laboratory's standard operator procedure.
- 8. Read type: Select Paired End reads if not already selected.
- 9. **Cycle numbers:** Cycle numbers for both Read 1 and Read 2 should be 150. Select "Next."

Version 1.6.0 Page **29** of **33**

- 10. **Sample Information:** Prepare the sample sheet with the sample identifiers, indices, and other pertinent information and save the sample sheet to a MiSeq-accessible folder.
 - a. Name the samples in the column labeled "Sample ID." Illegal characters include spaces, periods, and other special characters.
 - b. (Optional) The plates and well numbers can be added in "Plate" and "Well."
 - c. For each sample, indicate the TruSeq Custom Amplicon indices used during indexing PCR.

Version 1.6.0 Page **30** of **33**

TROUBLESHOOTING

Issue	Potential Cause	Solution
Low yield of gene-specific product	DNA quantity or quality	The recommended input for the assay is 10-80ng of genomic DNA. Higher quantities may be necessary for low or poor quality FFPE samples.
	Improper cycling	Check that the cycling protocol performed is the appropriate protocol for gene-specific amplification.
Low indexing efficiency	Improper Ampure purification	Incomplete Ampure purification or loss of gene-specific product will affect the indexing PCR reaction. The purified product can be checked on an agarose gel to ensure the gene-specific product was not lost. The Ampure bead ratio and ethanol concentration affect the PCR cleanup. Ensure the correct Ampure concentration was used for cleanup and fresh, 70% ethanol is used for the wash. Leftover ethanol from the wash steps can hinder the PCR reaction. Remove as much of the ethanol during the final wash step with a pipette and dry the beads to ensure the residual ethanol has evaporated.
Low library yield	DNA quantity or quality Improper Ampure	The recommended input for the assay is 10-80ng of genomic DNA. Higher quantities may be necessary for low or poor quality FFPE samples. Run the product from the gene-specific PCR on agarose gel to check the yield. The product can also be checked on an agarose gel after indexing PCR before and after Ampure purification. Incomplete Ampure purification or loss of product will affect the final yield. The purified product can be checked on an
	purification	agarose gel to ensure the product was not lost during PCR cleanup.

Version 1.6.0 Page **31** of **33**

		The Ampure bead ratio and ethanol concentration affect the PCR cleanup. Ensure the correct Ampure concentration was used for cleanup and fresh, 70% ethanol is used for the wash.
The libraries over-cluster or under-cluster on the MiSeq	Normalization and mix of libraries is not 15 pM (v2) or 25 pM (v3)	Check the 5 nM library mix using Qubit or RT-PCR. Dilute the denatured library mix as needed to adjust for the difference in concentration.
	Improper library quantitation	Improper library quantitation may result in artificially high or low yields, which affects downstream normalization. Re-quantitate the final libraries and/or the normalized libraries to check for the expected values.
	Improper Ampure purification	Changing the ratio of Ampure beads affects the purification of the products. Notably, the presence of primer dimers can cause an underestimation of total quantity, causing over-clustering. The Ampure bead ratio and ethanol concentration affect the PCR cleanup. Ensure the correct Ampure concentration was used for cleanup and fresh, 70% ethanol is used for the wash. The final libraries can be checked on an agarose gel for the proper product size and presence of primer dimers.
No-template control contains amplicons	Cross- contamination	Make sure to change tips between samples, and avoid waving over tubes or plates. When liquid handling, be careful to avoid waving used tips over samples. Poor sealing or residual liquid in tips can cause contamination of nearby samples. If possible, leave adjacent wells empty between samples.

Version 1.6.0 Page **32** of **33**

Reference Guide	ONCO/Reveal Lung and Colon Cancer Panel		
	Work spaces and equipment for pre-PCR and post-PCR should be separated to prevent amplicon contamination.		
	Periodically clean the work space, floor, equipment, and instrumentation with a laboratory cleaning solution (10% bleach, 70% isopropanol, or 70% ethanol) to break down amplicons on surfaces.		

Version 1.6.0 Page **33** of **33**