

Pillar Biosciences, Inc. 9 Strathmore Rd Natick, MA 01760 (800) 514-9307 | www.pillarbiosci.com

ABSTRACT

Introduction: Fully automated NGS library preparation workflows are highly desirable for clinical settings. In this study, we used the Biomek NGeniuS instrument (Beckman Coulter) as our platform because it has all necessary components on-deck including cold storage blocks, a magnet position, and a thermal cycler. We developed a fully automated process for our research-use-only (RUO) oncoReveal[™] 22-Gene Solid Tumor assay (ORST22) on the Biomek NGeniuS to prepare 4 to 24 libraries requiring only ~1 hour upfront hands-on time and 6 hours of walkaway time from input DNAs to final libraries. In this study, we evaluated the performance of the automated process and assessed the NGS results against the results from the manual workflow.

Method: Two DNA samples with various replicates were used for the study: NA12878 DNA (genome-in-a-bottle) at ~10ng and the moderately formalin-compromised positive DNA (ModfcDNA, Horizon Discovery) at ~20ng. One to three replicates of no-template control (NTC) were also processed in each run. To evaluate the run-to-run precision, three automation runs were performed and sequenced on different days to prepare 8, 16 and 24 libraries, respectively. To assess the NGS results against those from the manual process, the same reagents and the same input DNAs were used for library preparation by both workflows with 24 libraries for automation and 8 for manual prep. Subsequently, the libraries were sequenced on the same flow cells using Illumina NextSeq 550. The secondary analysis metrics and the variants reported by Pillar's PiVAT bioinformatic software were assessed and compared.

Results: No cross-contamination was observed in any NTC replicates in any of the runs. All runs generated high-quality results with consistent >90% effective on-target rates and ~100% of bases covered at \geq 0.2x mean coverage. Compared with the manual NGS libraries, the automated libraries showed slightly better uniformity with higher percentages of bases covered at $\geq 0.4x$ to 1x of the mean coverage. 20 known variants from each positive ModfcDNA with expected VAF from 1-30% were highly concordant between runs with within runs. No false positive variants were detected in any of the samples.

Conclusion: The automated Pillar ORST22 assay on Biomek NGeniuS system produced high quality and robust results with minimal hands-on time and human intervention. Together with the easy-to-use setup of the NGeniUS, and Pillar's single day library preparation workflow, these combined technologies could substantially reduce the lab operation burden.

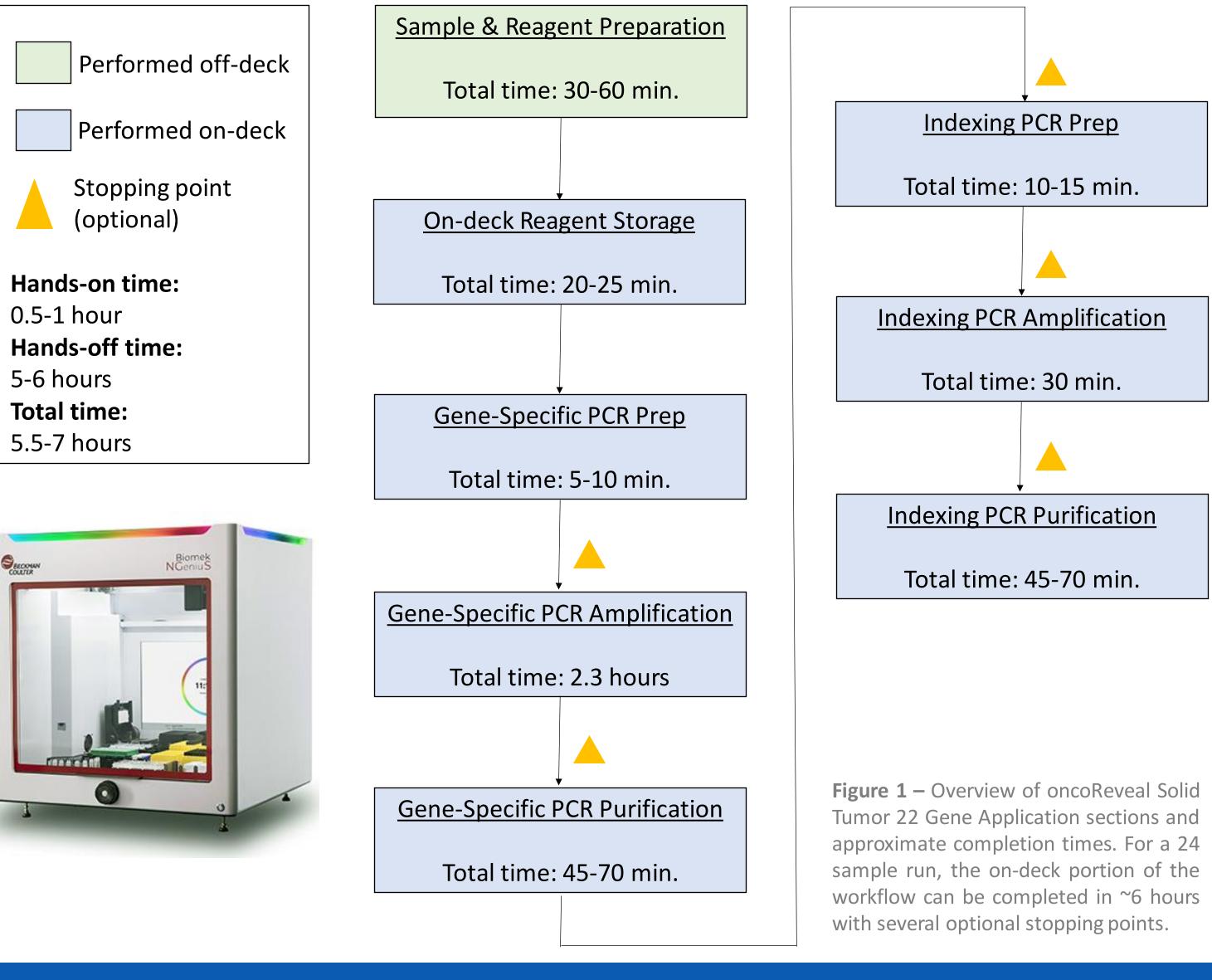
Automation of the Pillar Biosciences oncoReveal Solid Tumor 22 gene panel (ORST22) on the Biomek NGeniuS Next Generation Library Prep System

APPLIC

	Manual	NGeniuS		
Sample Count	Up to 24 per batch	4-24 per batch		
Input Mass	10-80ng			
Supported DNA Types	Genomic, FFPE			
Estimated hands- on time	3 - 4 hours	0.5 - 1 hour		
Estimated hands- off time	3 hours	5-6 hours		

Table 1 – Features of ORST22

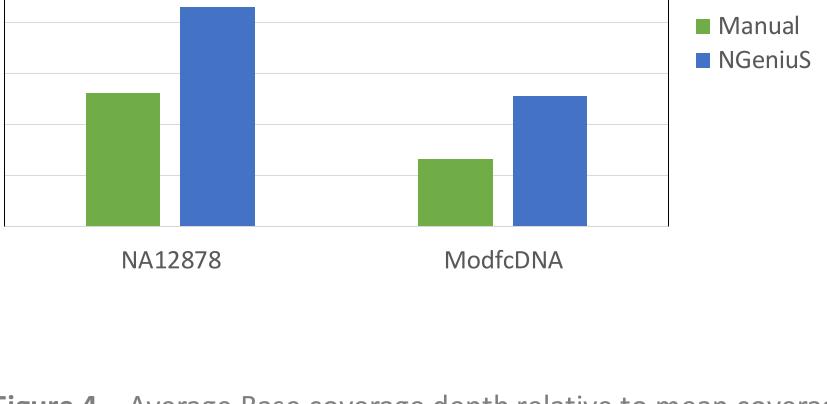
App Setting	Description
Mix beads during Gene-Specific PCR	Mixes AMPure XP beads during gene- specific PCR to prevent them from settling. If not selected, mixing will occur directly before gene-specific product purification.
IndexPlate	Allows the operator to enter in a name for the index plate being used in the batch.
Indexing PCR Cycles	Allows the operator to set the number of indexing PCR cycles performed within a range of 5-10.


Table 3 – ORST22 Gene Application settings, configured before each library prep run.

4	TIC		DES	GIGI	V						
					ORST2	22 Pan	el Info				
	AKT1	BRAF	DDR2	ERBB2	FBXW7	FGFR2	KRAS	MET	NRAS	PTEN	STK11
	ALK	CTNNB1	EGFR	ERBB4	FGFR1	FGFR3	MAP2K1	NOTCH1	PIK3CA	SMAD4	TP53

Table 2 – The 22 genes covered by the ORST22.

Variant ID	Gene	Variant ID		
L858R		N345I; N345T; N345K		
Exon 19 In-Frame Deletions		E542Q; E542K; E542V		
Т790М	PIK3CA	E545K; E545Q; E545A; E545G; E545D		
G719A; G719C; G719D; G719S		H1047Y; H1047L; H1047R		
Exon 20 In-frame Insertions		R88Q; R88L		
G12X		R248C		
G13X	ГСГРЭ	S249C		
A59E; A59G; A59T; A59S	FUFKS	G370C		
Q61E; Q61H; Q61K; Q61L;Q61R		Y373C		
K117N		R130Q; R130L; R130P; R130G; R130*		
A146T; A146P; A146V	PTEN	T319del		
Е17К		S249C		
V600E; V600K		R248C		
	L858R Exon 19 In-Frame Deletions T790M G719A; G719C; G719D; G719S Exon 20 In-frame Insertions G12X G13X A59E; A59G; A59T; A59S Q61E; Q61H; Q61K; Q61L;Q61R K117N A146T; A146P; A146V E17K	L858RExon 19 In-Frame DeletionsT790MG719A; G719C; G719D; G719SExon 20 In-frame InsertionsG12XG13XA59E; A59G; A59T; A59SQ61E; Q61H; Q61K; Q61L;Q61RK117NA146T; A146P; A146VE17K		


Table 4 – Examples of commonly mutated, clinically significant, variants in EGFR, KRAS, PTEN, PIK3CA, FGFR3, AKT1, and BRAF that are targeted in ORST22. Variants in green were used in evaluation during NGeniuS application development

Joseph Goffreda¹, Sean Marris¹, Kirsty McFarland¹, Nicholas Lodato¹, Tyler Buit², ShiPing Zou¹, Zhaohui Wang¹

¹ Pillar Biosciences, Natick, MA; ² Beckman Coulter, Indianapolis, IN

20

Figure 2 – Final library yield (nM) across preparation

method and sample type conditions

Figure 4 – Average Base coverage depth relative to mean coverage at 0.2x, 0.4x, and 1x across library preparation method and DNA type.

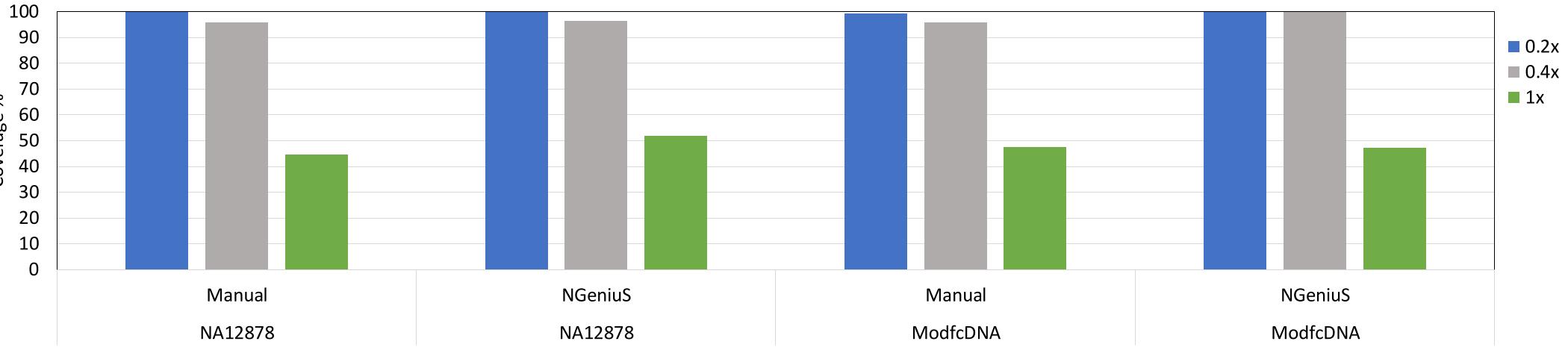


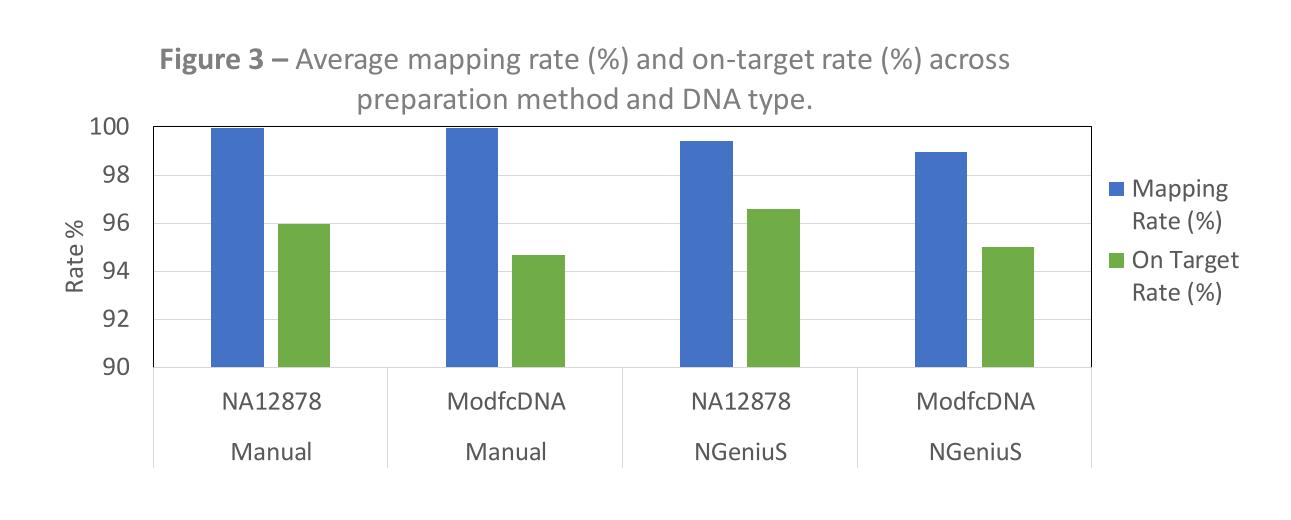
Table 5 – Average variant read frequency % for expected ModfcDNA variants across NGeniuS and manual sample preparation methods N=2 (manual), 4(NGeniuS).

					N	lanual	NGeniuS	
Gene	HGVSC	HGVSP	Genomic Position	Expected VAF (%)	Hit Rate	VAF (%)	Hit Rate	VAF (%)
STK11	c.816C>T	p.Tyr272=	chr19:1221293-1221293	9.0	2/2	8.01 <u>+</u> 1.01	6/6	8.55 <u>+</u> 1.1
ГР53	c.376-7C>T	N/A	chr17:7578561-7578561	26.0	2/2	29.37 <u>+</u> 0.71	6/6	27.42 <u>+</u> 1.33
(RAS	c.38G>A	p.Gly13Asp	chr12:25398281-25398281	15.0	2/2	14.28 <u>+</u> 1.51	6/6	14.78 <u>+</u> 0.9
KRAS	c.35G>A	p.Gly12Asp	chr12:25398284-25398284	6.0	2/2	6.81 <u>+</u> 0.52	6/6	6.94 <u>+</u> 0.63
ERBB2	c.2411G>A	p.Gly804Asp	chr17:37881082-37881082	5	2/2	4.55 <u>+</u> 0.62	6/6	4.78 <u>+</u> 0.6
CTNNB1	c.98C>A	p.Ser33Tyr	chr3:41266101-41266101	30	2/2	32.17 <u>+</u> 0.51	6/6	31.01 <u>+</u> 1.75
CTNNB1	c.133_135del	p.Ser45del	chr3:41266134-41266136	10	2/2	9.92 <u>+</u> 1.24	6/6	9.37 <u>+</u> 1.38
EGFR	c.1839C>T	p.Ala613=	chr7:55233089-55233089	8	2/2	6.94 <u>+</u> 0.21	6/6	7.17 <u>+</u> 0.4
EGFR	c.2155G>A	p.Gly719Ser	chr7:55241707-55241707	24.5	2/2	24.79 <u>+</u> 0.41	6/6	24.43 <u>+</u> 0.99
EGFR	c.2235_2249del	p.Glu746_Ala750del	chr7:55242465-55242479	2	2/2	1.96 <u>+</u> 0.06	6/6	1.86 <u>+</u> 0.33
EGFR	c.2369C>T	p.Thr790Met	chr7:55249071-55249071	1	2/2	1.28 <u>+</u> 0.39	4/6*	0.81 <u>+</u> 0.64
EGFR	c.2573T>G	p.Leu858Arg	chr7:55259515-55259515	3	2/2	3.36 <u>+</u> 0.93	6/6	3.85 <u>+</u> 0.4
MAP2K1	c.167A>C	p.Gln56Pro	chr15:66727451-66727451	30	2/2	32.29 <u>+</u> 0.71	6/6	31.47 <u>+</u> 2.19
NRAS	c.181C>A	p.Gln61Lys	chr1:115256530115256530	12.5	2/2	11.35 <u>+</u> 0.08	6/6	11.51 <u>+</u> 0.69
BRAF	c.1799T>A	p.Val600Glu	chr7:140453136140453136	10.5	2/2	12.12 <u>+</u> 1.33	6/6	13.25 <u>+</u> 0.9
DDR2	c.351G>A	p.Met117lle	chr1:162724579162724579	10	2/2	9.79 <u>+</u> 1.82	6/6	9.93 <u>+</u> 0.92
РІКЗСА	c.1173A>G	p.lle391Met	chr3:178927410178927410	9	2/2	8.56 <u>+</u> 0.86	6/6	8.53 <u>+</u> 0.50
РІКЗСА	c.1633G>A	p.Glu545Lys	chr3:178936091178936091	9	2/2	9.11 <u>+</u> 0.45	6/6	8.43 <u>+</u> 0.8
РІКЗСА	c.3140A>G	p.His1047Arg	chr3:178952085178952085	17.5	2/2	18.39 <u>+</u> 0.96	6/6	17.66 <u>+</u> 0.7
GFR3	c.1953G>A	p.Thr651=	chr4:1807894-1807894	100	2/2	98.83 <u>+</u> 0.09	6/6	99.00 <u>+</u> 0.28
GFR	c.2361G>A	p.Gln787=	chr7:55249063-55249063	15	2/2	14.13 <u>+</u> 0.98	6/6	13.83 <u>+</u> 1.85

Variant is delow var cuton in pival sontware.

Conclusions:

1. Using the NGeniuS ORST22 application, 24 libraries can be prepared in approximately 7 hours with ~1 hour hands-on time and ~6 hours hands-off time (Figure 1).


2. The NGeniuS automated platform can produce high quality libraries using Pillar Biosciences oncoReveal Solid Tumor 22 Gene panel (Figures 2-4).

3. Resulting variant calls for libraries prepared on the NGeniuS platform were as expected and comparable to manual preparation (Table 5).

<u>lification</u>
min.
fication
0 min.

RESULTS AND CONCLUSIONS

