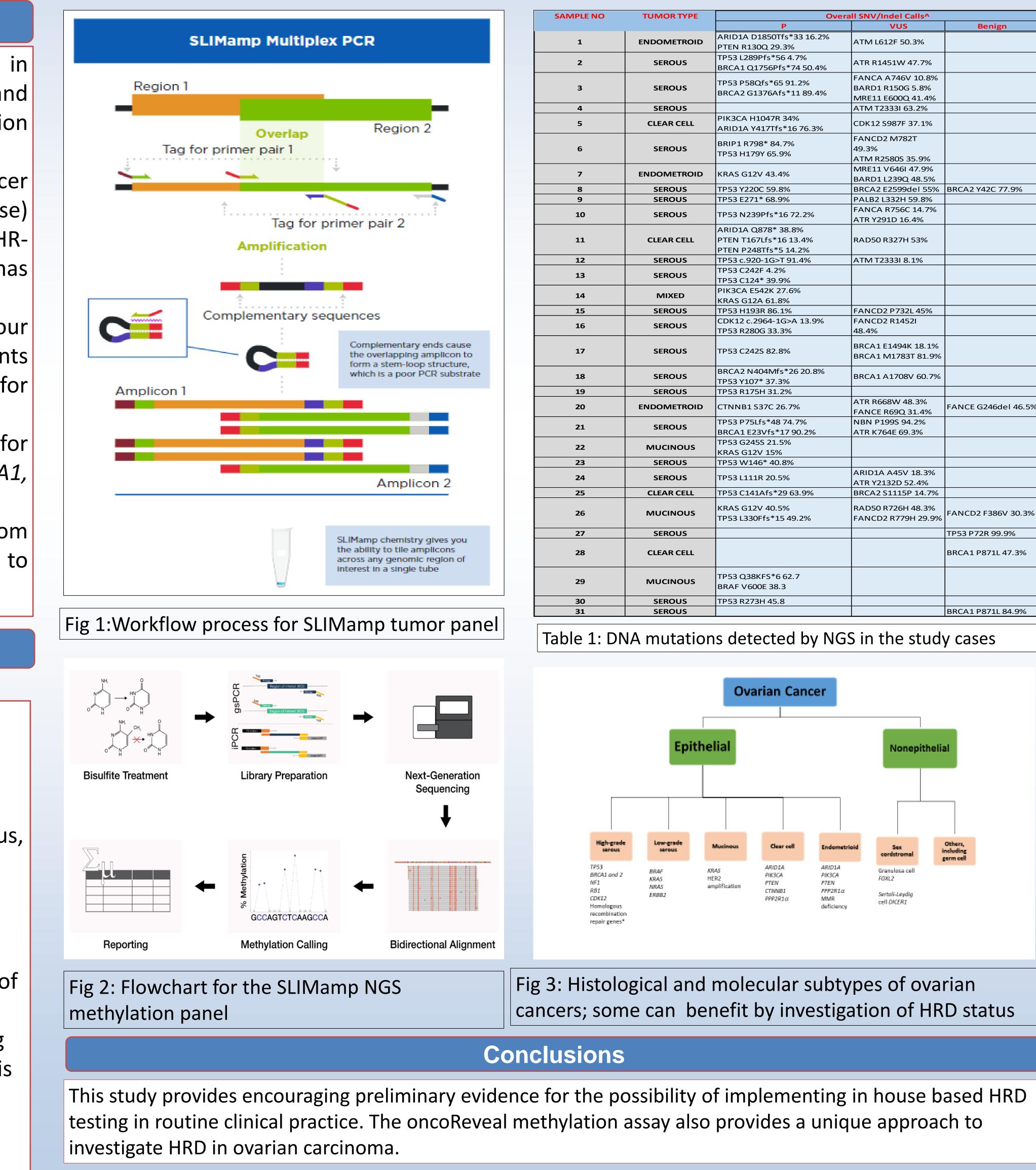


Introduction


- Homologous repair pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD).
- Assessment of HRD status is important for ovarian cancer management as it has been shown that Poly(ADP-ribose) polymerase (PARP) inhibitors are effective in treating HRdeficient tubo-ovarian high-grade serous carcinomas (HGSC).
- Pillar's oncoReveal[™] HRDv2 assay was evaluated in our laboratory for detection of causal single nucleotide variants (SNVs), indels and exon level copy number variants for analysis of HRD.
- The oncoReveal Methylation Assay was also evaluated for detection of methylation in promoter regions of BRCA1, BRCA2, RAD51C and XRCC3.
- Retrospective clinical samples of ovarian carcinoma from the past 10 years at Temple University Hospital were used to evaluate 33 genes using the SLIMamp NGS technology.

Methods

- A total of 31 formalin-fixed paraffin embedded (FFPE) ovarian cancer specimens were used for both mutation and methylation analysis.
- The oncoReveal HRD genetic and epigenetic assays were performed on histologically classified 20 high grade serous, 4 clear cell, 3 mucinous, 3 endometrioid and 1 mixed tumor specimens.
- FFPE specimens were microdissected and DNA was extracted using standard laboratory protocols.
- The oncoReveal NGS assay was performed for detection of mutations on the Illumina MiSeq.
- The methylation assay involved bisulfite conversion using the EpiTect Fast DNA Bisulfite kit followed by NGS analysis using the methylation panel on the Illumina MiSeq.
- Bioinformatic analysis was performed using the PIVAT analysis software.

Evaluation of Homologous Repair Deficiency Status in Ovarian Carcinoma using In House Next Generation Sequencing Panels

Muhammad Hussain¹, MD; Yekaterina Belogrivtseva¹, MD; Nirag Jhala¹, MD; Anjali Seth¹, PhD ¹Department of Pathology and Laboratory Medicine, Temple University Hospital, Philadelphia, PA

ТҮРЕ	Over				
	Р	VUS	Benign		
TROID	ARID1A D1850Tfs*33 16.2% PTEN R130Q 29.3%	ATM L612F 50.3%			
US	TP53 L289Pfs*56 4.7% BRCA1 Q1756Pfs*74 50.4%	ATR R1451W 47.7%			
US	TP53 P58Qfs*65 91.2% BRCA2 G1376Afs*11 89.4%	FANCA A746V 10.8% BARD1 R150G 5.8% MRE11 E600Q 41.4%			
US		ATM T2333I 63.2%			
CELL	PIK3CA H1047R 34% ARID1A Y417Tfs*16 76.3%	CDK12 S987F 37.1%			
US	BRIP1 R798* 84.7% TP53 H179Y 65.9%	FANCD2 M782T 49.3% ATM R2580S 35.9%			
TROID	KRAS G12V 43.4%	MRE11 V646I 47.9% BARD1 L239Q 48.5%			
US	TP53 Y220C 59.8%	BRCA2 E2599del 55%	BRCA2 Y42C 77.9%		
US	TP53 E271* 68.9%	PALB2 L332H 59.8%			
US	TP53 N239Pfs*16 72.2%	FANCA R756C 14.7% ATR Y291D 16.4%			
CELL	ARID1A Q878* 38.8% PTEN T167Lfs*16 13.4% PTEN P248Tfs*5 14.2%	RAD50 R327H 53%			
US	TP53 c.920-1G>T 91.4%	ATM T2333I 8.1%			
US	TP53 C242F 4.2% TP53 C124* 39.9%				
ED	PIK3CA E542K 27.6% KRAS G12A 61.8%				
US	TP53 H193R 86.1%	FANCD2 P732L 45%			
US	CDK12 c.2964-1G>A 13.9% TP53 R280G 33.3%	FANCD2 R1452I 48.4%			
US	TP53 C242S 82.8%	BRCA1 E1494K 18.1% BRCA1 M1783T 81.9%			
US	BRCA2 N404Mfs*26 20.8% TP53 Y107* 37.3%	BRCA1 A1708V 60.7%			
US	TP53 R175H 31.2%				
TROID	CTNNB1 S37C 26.7%	ATR R668W 48.3% FANCE R69Q 31.4%	FANCE G246del 46.5%		
US	TP53 P75Lfs*48 74.7% BRCA1 E23Vfs*17 90.2%	NBN P199S 94.2% ATR K764E 69.3%			
IOUS	TP53 G245S 21.5% KRAS G12V 15%				
US	TP53 W146* 40.8%				
US	TP53 L111R 20.5%	ARID1A A45V 18.3% ATR Y2132D 52.4%			
CELL	TP53 C141Afs*29 63.9%	BRCA2 S1115P 14.7%			
IOUS	KRAS G12V 40.5% TP53 L330Ffs*15 49.2%	RAD50 R726H 48.3% FANCD2 R779H 29.9%	FANCD2 F386V 30.3%		
US			TP53 P72R 99.9%		
CELL			BRCA1 P871L 47.3%		
IOUS	TP53 Q38KFS*6 62.7 BRAF V600E 38.3				
US	TP53 R273H 45.8				

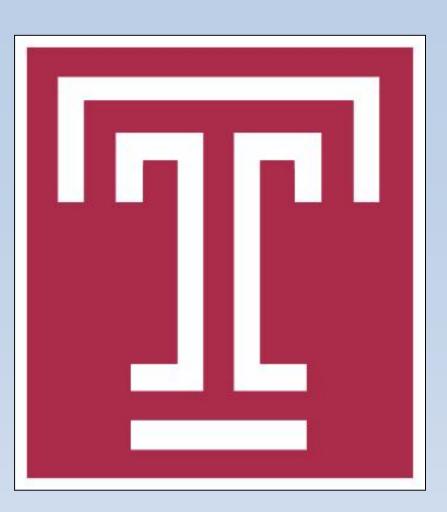

	Gene-Level Raw Average Methylation					Amplicon-Level Average Methylation											
		Gene-L	ever Raw Av	erage ivietr	iyiation	BRCA2	BRCA2	BRCA2	XRCC3	XRCC3	XRCC3	XRCC3	XRCC3	BRCA1	BRCA1	RAD51C	RAD51C
	# Methylation Sites =>	21	26	10	25	5	4	12	4	3	9	6	4	7	3	15	10
Sample_I D	Sequencing_ID	BRCA2	XRCC3	BRCA1	RAD51C	N- Bis04.trg4 0.BRCA2.t rgt2	N-Bis05- Deg.trg40 .BRCA2.tr gt2		XRCC3.Intr on6B- ne ws	XRCC3.intr on6A-new	XRCC3.5UT R-new	N- Bis02.trg8 6.XRCC3.t rgt	-	BisSeq04.B RCA1.Pro m1	BisSeq05.B RCA1.Pro m2		BisSeq03. RAD51C.P rom3
Sample-1	RDvSMpMethyld230614iN4-07A_Sample-1	0.00	44.28	0.25	0.42	1.80	0.32	0.18	56.84	50.32	85.60	0.26	0.24	0.29	0.16	0.44	0.40
Sample-2	RDvSMpMethyld230614iN4-07B_Sample-2	1.12	36.79	0.49	0.64	3.27	0.40	0.46	51.42	41.86	69.07	0.40	0.32	0.52	0.42	0.74	0.49
Sample-3	RDvSMpMethyld230614iN4-07C_Sample-3	1.32	44.85	0.54	0.69	3.84	0.56	0.52	80.65	49.78	76.46	0.65	0.49	0.51	0.60	0.72	0.65
Sample-4	RDvSMpMethyld230614iN4-07D_Sample-4	0.86	46.84	0.26	0.32	2.68	0.31	0.29	72.13	70.79	79.35	0.31	0.27	0.27	0.22	0.32	0.31
Sample-5	RDvSMpMethyld230614iN4-07E_Sample-5	0.67	50.44	0.28	0.41	1.72	0.36	0.33	74.37	67.19	89.90	0.32	0.34	0.29	0.25	0.47	0.34
Sample-6	RDvSMpMethyld230614iN4-07F_Sample-6	0.50	46.44	0.26	0.49	1.19	0.32	0.28	70.83	61.69	81.77	0.34	0.28	0.28	0.21	0.56	0.39
Sample-7	RDvSMpMethyld230614iN4-07G_Sample-7	0.77	40.22	0.29	0.61	2.38	0.27	0.27	70.25	65.90	62.62	0.36	0.28	0.29	0.28	0.77	0.37
Sample-8	RDvSMpMethyld230614iN4-07H_Sample-8	0.68	35.68	0.45	0.61	1.24	0.64	0.47	74.00	49.78	53.08	0.49	0.42	0.50	0.34	0.63	0.58
Sample-9	RDvSMpMethyld230614iN4-08A_Sample-9	0.76	49.76	29.44	1.37	1.37	0.59	0.56	80.14	75.60	82.28	0.61	0.54	32.28	22.82	1.77	0.76
Sample-10	RDvSMpMethyld230614iN4-08B_Sample-10	2.65	45.39	51.50	1.39	9.41	0.69	0.49	77.92	68.50	72.99	0.66	0.53	47.76	60.22	1.72	0.90
Sample-11	RDvSMpMethyld230614iN4-08C_Sample-11	1.67	30.82	0.49	0.53	5.36	0.56	0.51	29.27	22.42	67.96	0.57	0.49	0.46	0.58	0.52	0.55
Sample-12	RDvSMpMethyld230614iN4-08D_Sample-12	0.50	46.06	0.46	2.12	0.79	0.52	0.38	81.07	67.39	74.01	0.53	0.43	0.48	0.40	3.13	0.61
Sample-13	RDvSMpMethyld230614iN4-08E_Sample-13	0.93	44.23	0.58	0.99	1.88	0.58	0.65	80.69	70.58	67.69	0.66	0.59	0.65	0.42	1.18	0.70
Sample-14	RDvSMpMethyld230614iN4-08F_Sample-14	1.87	41.69	0.44	0.57	5.97	0.56	0.59	51.07	45.53	81.91	0.59	0.56	0.46	0.39	0.49	0.68
Sample-15	RDvSMpMethyld230614iN4-08G_Sample-15	0.74	38.24	0.61	0.62	0.93	0.84	0.62	70.56	54.49	60.19	0.70	0.64	0.61	0.62	0.68	0.53
Sample-16	RDvSMpMethyld230614iN4-08H_Sample-16	0.78	45.41	0.53	0.66	1.87	0.40	0.45	60.66	57.72	84.46	0.51	0.45	0.57	0.46	0.75	0.53
Sample-17	RDvSMpMethyld230614iN4-09A_Sample-17	1.34	52.23	0.22	0.34	4.77	0.27	0.26	85.95	78.81	86.13	0.31	0.16	0.22	0.20	0.32	0.36
Sample-18	RDvSMpMethyld230614iN4-09B_Sample-18	1.02	48.56	0.28	0.50	3.45	0.26	0.26	73.91	66.36	85.08	0.26	0.15	0.31	0.23	0.59	0.35
Sample-19	RDvSMpMethyld230614iN4-09C_Sample-19	1.41	37.41	0.39	0.72	4.81	0.32	0.36	74.00	56.15	56.12	0.33	0.28	0.43	0.30	0.92	0.43
Sample-20	RDvSMpMethyld230614iN4-09D_Sample-20	1.58	40.00	0.34	0.46	5.56	0.39	0.32	50.99	42.25	78.40	0.36	0.36	0.36	0.30	0.52	0.36
Sample-21	RDvSMpMethyld230614iN4-09E_Sample-21	0.96	50.44	0.57	0.87	2.46	0.45	0.51	80.15	78.20	83.60	0.44	0.32	0.59	0.54	1.07	0.57
Sample-22	RDvSMpMethyld230614iN4-09F_Sample-22	0.63	33.53	0.33	0.54	1.38	0.37	0.41	42.82	32.03	66.69	0.40	0.42	0.34	0.33	0.65	0.39
Sample-23	RDvSMpMethyld230614iN4-09G_Sample-23	0.97	39.86	34.90	0.41	3.13	0.29	0.29	67.90	60.15	64.66	0.25	0.22	31.81	42.11	0.49	0.29
Sample-24	RDvSMpMethyld230614iN4-09H_Sample-24	1.00	35.26	0.44	0.79	2.91	0.33	0.42	61.65	47.70	58.15	0.41	0.31	0.52	0.25	0.94	0.55
Sample-25	RDvSMpMethyld230614iN4-10A_Sample-25	0.55	39.97	0.28	0.39	1.38	0.32	0.28	56.98	38.64	76.97	0.25	0.30	0.28	0.28	0.44	0.31
Sample-26	RDvSMpMethyld230614iN4-10B_Sample-26	0.50	39.91	0.25	0.28	1.38	0.25	0.21	51.86	56.28	73.23	0.27	0.18	0.29	0.16	0.30	0.25
Sample-27	RDvSMpMethyld230614iN4-10C_Sample-27	0.55	33.86	46.91	0.69	1.40	0.31	0.28	82.66	68.03	38.00	0.43	0.29	44.95	51.49	0.85	0.45
Sample-28	TEMPLE-METH-28-1	0.60	48.20	0.53	0.73	0.93	0.66	0.47	68.86	63.84	86.69	0.55	0.51	0.50	0.59	0.79	0.63
Sample-29	TEMPLE-METH-29-2	0.69	42.61	0.59	0.77	0.84	0.77	0.62	59.32	58.48	76.52	0.63	0.67	0.60	0.57	0.85	0.61
Sample-30	TEMPLE-METH-30-3	0.60	37.48	0.65	0.98	0.77	0.47	0.59	53.09	43.60	69.43	0.64	0.64	0.64	0.67	1.15	0.68
Sample-31	TEMPLE-METH-31-4	0.55	51.24	24.05	0.74	0.50	0.75	0.50	87.24	81.10	81.51	0.66	0.59	24.22	23.65	0.73	0.76

Table 2: Promoter methylation detected by NGS in the study cases

SAMPLE NO	TUMOR TYPE	PATHOGENIC MUTATIONS	METHYLATION		
2	CEDOLIC	TP53 L289Pfs*56 4.7%			
2	SEROUS	BRCA1 Q1756Pfs*74 50.4%	Neg		
3	SEROUS	TP53 P58Qfs*65 91.2%			
		BRCA2 G1376Afs*11 89.4%	Neg		
6	SEROUS	BRIP1 R798* 84.7%			
		TP53 H179Y 65.9%	Neg		
18	SEROUS	BRCA2 N404Mfs*26 20.8%			
		TP53 Y107* 37.3%	Neg		
21	SEROUS	TP53 P75Lfs*48 74.7%			
		BRCA1 E23Vfs*17 90.2%	Neg		
9	SEROUS	TP53 E271* 68.9%	29.44		
10	SEROUS	TP53 N239Pfs*16 72.2%	51.5		
23	SEROUS	TP53 W146* 40.8%	34.9		
27	SEROUS		46.91		
31	SEROUS		24.05		

The NGS results were analyzed by the Pillar PIVAT pipeline.

- specimens in BRCA1.
- high grade serous carcinoma patients.
- methylation in HRD genes.

Table 3: Specimens detected by NGS that exhibit HRD and benefit from PARP inhibitors

Results

• Table 1 shows pathogenic HRD mutations were detected in 28/31 (90%) specimens. • The most common mutations detected were in TP53, 68% and BRCA1/2 13% followed by mutations in genes such as ARAD1A, KRAS, PTEN, CTNNB1, BRIP1, PIK3CA and CDK12. (Table 1). • Table 2 shows the average amplicon and gene level methylation for BRCA 1, BRCA 2, XRCC3 and *RAD51C.* Promoter methylation was observed in five high grade serous carcinoma

• Promoter methylation in XRCC3 was also identified in clear cell, mucinous as well as

• Table 3 is a compilation of patient specimens that will show HRD using the Pillar HRD assay. These specimens either harbor a HRD related mutation or show promoter