RACE AGAINST THE CLOCK: VALIDATING A RAPID NGS MYELOID PANEL

AMANDASUE LANDI^{1*}, BRAULIO A CAPPAS-NAVARRO^{1*}, TANASHREE KALGHATGI¹, ABHIMANNYU RIMAL¹, AKSHAY CHITTURI¹, CAREN GENTILE¹, SARAH E HERLIHY¹, SIMON CHEN^{1,2}

¹DIVISION OF PRECISION AND COMPUTATIONAL DIAGNOSTICS, DEPARTMENT OF PATHOLOGY AND LABORATORY MEDICINE, HOSPITAL OF THE UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA;

2PERELMAN SCHOOL OF MEDICINE, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA; *CO-FIRST AUTHORS

INTRODUCTION

- Acute leukemia (AL) requires rapid (3–5 days) multi-gene results for accurate subtyping.
- Traditional workflows rely on multiple send-outs and overlapping assays, extending turnaround and delaying genomically guided treatment decisions.
- The Hematological Expedited Sequencing (HEXS) streamlines testing into a single next-generation sequencing (NGS) panel covering 58 key genes relevant to myeloid neoplasms.
- This study validated HEXS on both the MiSeq and MiSeq i100 Plus (i100) platforms to deliver comprehensive, rapid genomic results for hematologic malignancies.

METHODS

- HEXS is based on the Pillar oncoReveal® Myeloid Panel (Figure 1).
- Data were analyzed using Pillar's PiVAT bioinformatics pipeline (v.2024.2.3) for variant calling.

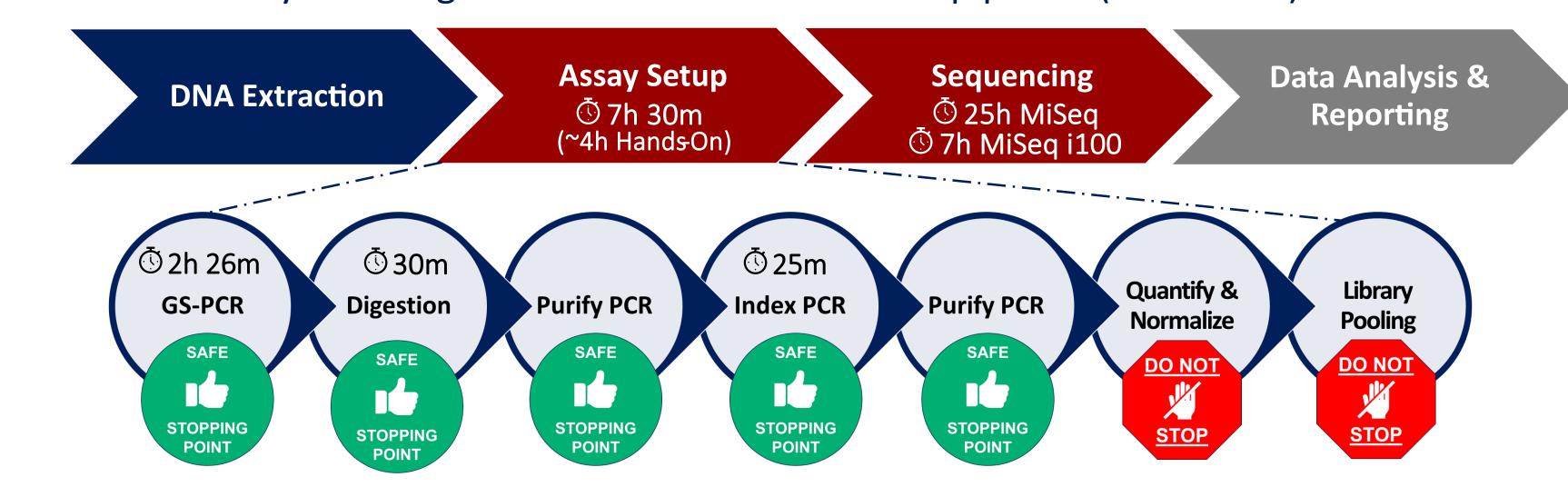


Figure 1: HEXS assay workflow.

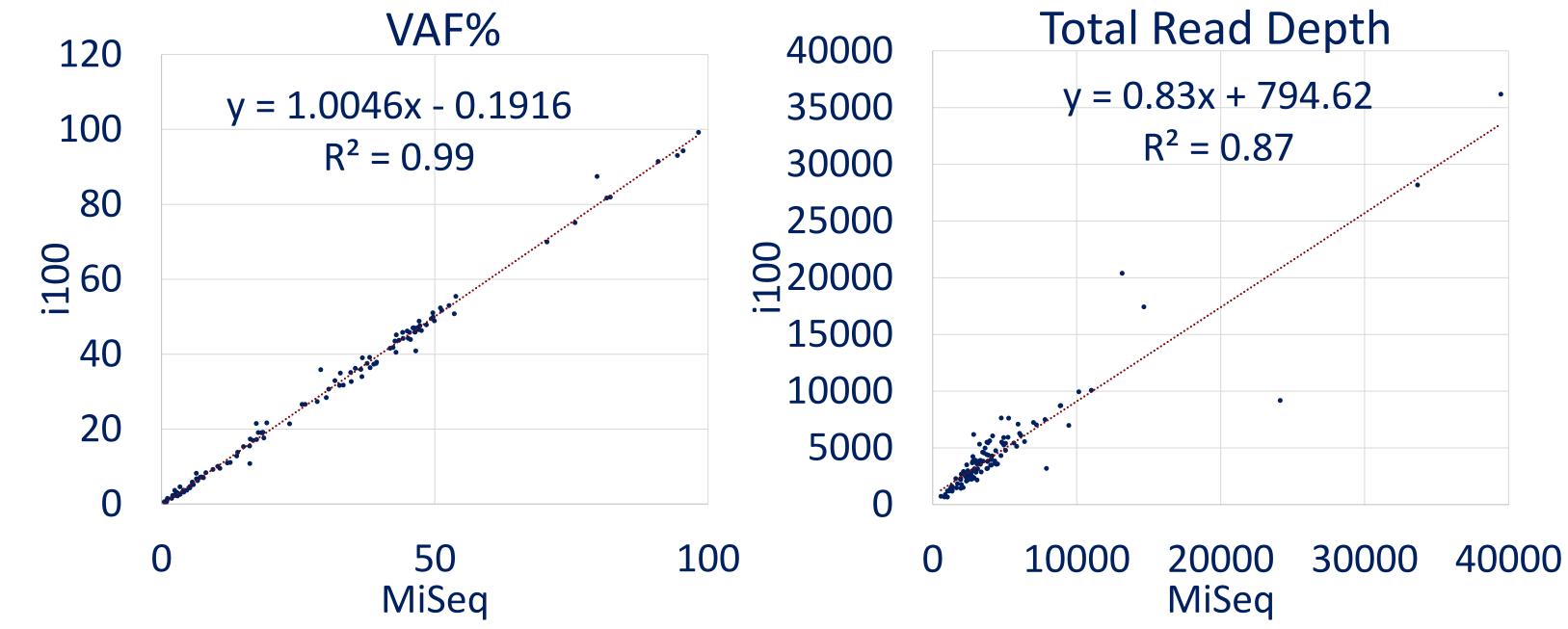

HEXS Gene Coverage									
ABL1	BRAF	CEBPA	ETV6	HRAS	KDM6A	NPM1	PTEN	SMC1A	<i>TP53</i>
ANKRD26	CALR	CSF3R	EZH2	IDH1	KIT	NRAS	PTPN11	SMC3	U2AF1
ASXL1	CBL	CUX1	FLT3	IDH2	KMT2A	PDGFRA	RAD21	SRSF2	WT1
ATRX	CBLB	DDX41	GATA1	IKZF1	KRAS	PHF6	RUNX1	STAG1	ZRSR2
BCOR	CBLC	DNMT3A	GATA2	JAK2	MPL	PIGA	SETBP1	STAG2	
BCORL1	CDKN2A	ETNK1	GNAS	JAK3	NF1	PPM1D	SF3B1	TET2	

Table 1: 58 genes covered by HEXS. Bold: Full coding DNA sequence; Red: ELN and NCCN required testing at diagnosis; Blue: ELN recommended for testing at diagnosis.

- Performance was established using 61 positive and 18 negative samples sourced from residual bone marrow, peripheral blood and bone core specimens previously tested on NGS and/or capillary electrophoresis methods, and covered SNVs, indels, and FLT3-ITDs.
- One comprehensive control, which acts as both a positive and negative control, was included in every run.
- Precision, limit of input (LOI), and limit of detection (LOD), were established by up to 10 replicates using 4 clinical samples and 1 reference standard (Horizon HD829).
- Receiver operating characteristic (ROC) analysis was performed to optimize sequencing depth and establish cutoffs for accurate variant detection.
- Performance equivalency testing was completed using the i100.

1. Accuracy

• Good correlation between MiSeq and i100 VAF% and Read Depth, confirming comparable variant detection and sequencing performance.

Figure 2: Linear regression for VAF% and read depth for SNVs, indels, and *FLT3*-ITDs between MiSeq and i100.

2. Sensitivity and Specificity

HEXS demonstrates strong concordance across variant types, with few false positives.

Variant Type		ity (PPA) ve/Expected)	Specificity (PPV) (True Positive/True Positive + False Positive)		
	MiSeq	i100	MiSeq	i100	
SNVs	99.5%	100%	96.3%	99.5%	
31VS	(195 / 196)	(203 / 203)	(206 / 214)	(210 / 211)	
Indels <10bp / "Delins"	100%	100%	98.5%	97.0%	
mueis <100p / Deims	(64 / 64)	(65 / 65)	(66 / 67)	(65 / 67)	
Indels ≥10bp	94.1%	100%	87.5%	87.5%	
mueis zioop	(16 / 17)	(22 / 22)	(21 / 24)	(21 / 24)	
FIT2 ITDs	100%	100%	100%	100%	
<i>FLT3</i> -ITDs	(17 / 17)	(21 / 21)	(22 / 22)	(24 / 24)	

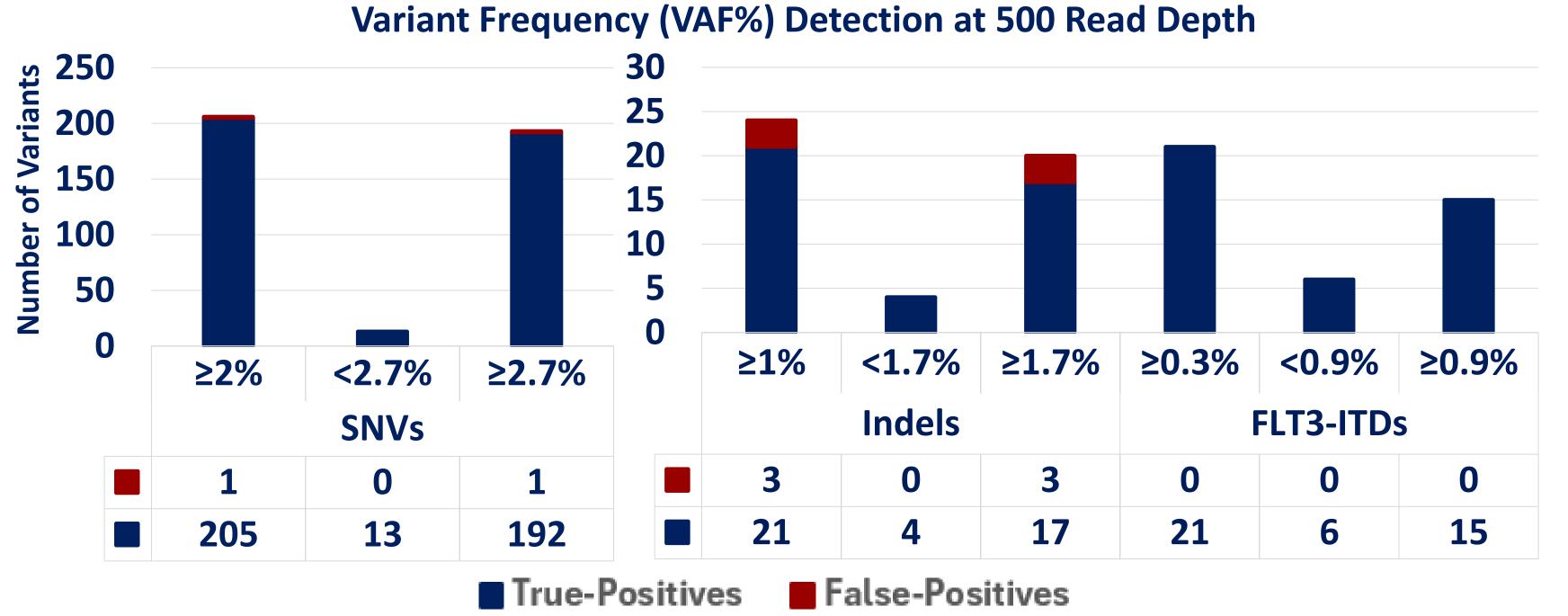
Table 2: Sensitivity and Specificity across sequencing platforms with data shown after discrepancy resolution.

LIMITATIONS

- Variants in homopolymer or low-complexity regions with <500× coverage or VAFs <4 % (SNVs) or <3 % (indels) increase false positivity.
- DNA input of 20–60 ng is optimal for reliable performance. 10 ng can be used, but should be reported with caution, due to increased false positivity at lower inputs.
- Detection is limited by vendor-defined filters in regions of low complexity. SNVs, Indels <10bp, and indels ("delins") ≥10bp are filtered at 2%. All other indels are filtered at 1%.
- *FLT3*-ITDs ≥21 bp are detected down to 0.3 % VAF, while ITDs >84 bp fall outside the validated detection range.

RESULTS

3. Precision


Reproducible qualitative variant detection across VAFs; high %CVs due to expected variability near LOD.

Instrument	Precision Type	Total Replicates	% Concordant (VAF% Range)	Overall %CV Range (All Samples and Variant Types)
MiSeq	Intra-Assay	36	100% (2.3 - 49%)	0.4-23.7%
	Inter-Assay	36	100% (1.1-49%)	0.5-49.2%
i100	Intra-Assay	36	100% (1.0-47.8%)	0.7-25.3%
	Inter-Assay	36	100% (0.9-47.8%)	0.7-44.6%

Table 3: HEXS intra- and inter- assay reproducibility data for SNVs, indels, and FLT3-ITDs.

4. ROC Analysis and Limit of Detection

- ROC analysis identified 500x as the optimal read-depth cutoff, while LOD studies confirmed reliable detection at ~1–2 % VAF for SNVs/Indels and 0.3 % for *FLT3*-ITDs.
- False positivity limited to variants with low-VAF calls or homopolymer regions (Figure 3).

Figure 3: HEXS performance at 500x read depth across VAF bins. True-positive (blue) and false-positive (red) counts are shown for SNVs, Indels, and *FLT3*-ITDs.

CONCLUSIONS

- Overall results were concordant and reproducible, confirming manufacturer cutoffs of 2%, 1% and 0.3% for SNVs, indels and *FLT3*-ITDs, respectively.
- HEXS provides a streamlined, and clinically actionable workflow for rapid genomic characterization of hematologic malignancies.
- HEXS performed on the i100 delivers equivalent or better analytical performance than the MiSeq and reduces sequencing time by 17 hours.
- HEXS enables 3–5-day myeloid NGS reporting and supports rapid clinical decisionmaking.