

Evaluation of the Pillar NGS SLIMamp™ Cancer Hotspot Panel

Dartmouth-Hitchcock MEDICAL CENTER

Francine B. de Abreu¹, Jason D. Peterson¹, Brian Dugan², Zhaohui Wang², Gregory J. Tsongalis¹

¹Department of Pathology and Laboratory Medicine, DHMC and NCCC, Lebanon, NH and Geisel School of Medicine, Hanover, NH and

² Pillar Biosciences, Natick, MA

ABSTRACT

Introduction: Next-generation sequencing (NGS) methods for somatic mutation detection have been rapidly integrated in clinical oncology. The main considerations for the clinical laboratories to adopt the NGS test include the ability of using low-quality and low amount of FFPE DNA as input, sequencing quality, assay turn-around-time, ease-of-use, cost, and sample multiplexing capacity. To address these needs, Pillar Biosciences has developed a streamlined single-tube multiplex-PCR-based library-prep technology (SLIMamp) and an accompanying NGS data analysis pipeline. In this study, we evaluated the performance of the Pillar SLIMamp[™] Cancer Hotspot Panel for 56 genes and assessed the concordance of variant detection against the previously reported clinical results tested by the Ion Torrent Cancer Hotspot Panel v2 (CHPv2).

Methods: A total of 15 FFPE samples were included in this evaluation from disparate indications: glioma and colon adenocarcinoma. All samples had DNA quality Q129bp/Q41bp above 0.4 according to the KAPA hgDNA Quantification and QC Kit. A range of 17 – 72 ng of gDNA was used as input for SLIMamp library preparation. A total of 24 samples were normalized, pooled, and sequenced on Illumina's MiSeq® system using v3 chemistry. For data analysis of the Pillar panel, FASTQ files were uploaded to the Pillar pipeline, where sequence alignment, variant calling and annotation were performed. Variant calls within genomic regions covered by both panels were compared. The data was then compared to clinical samples which had previously been tested in a CLIA lab.

Results: For the 15 FFPE samples, the SLIMamp™ Cancer Hotspot Panel displayed both high median ontarget percentages (99.57%) and mapping rates (99.11%) across targeted regions with the mean base coverage ranging from 2816x-4857x. The SLIMamp Cancer Hotspot Panel demonstrated 100% concordance between the panel and previous clinical results. In addition, the panel demonstrated excellent sensitivity detecting the presence of alleles above 5% frequency.

Conclusions: The Pillar SLIMamp Cancer Hotspot Panel allows for the interrogation of a diverse set of solid tumor samples and a high degree of sample pooling on a MiSeq instrument, providing quick turnaround time from extracted DNA to data analysis.

INTRODUCTION

- Next-generation sequencing (NGS) methods for somatic mutation detection have been rapidly integrated in clinical oncology.
- ♦ The main considerations for clinical laboratories to adopt NGS test include the ability of using low-quality and low amount of FFPE DNA as input, sequencing quality, assay turn-around-time, ease-of-use, cost, and sample multiplexing capacity. To address these needs, **Pillar Biosciences** has developed a streamlined single-tube multiplex-PCR-based library-prep technology (SLIMamp) and an accompanying NGS data analysis pipeline.

Aim. To evaluate the performance of the Pillar SLIMampTM Cancer Hotspot Panel for 56 genes and assessed the concordance of variant detection against the previously reported clinical results tested by the Ion Torrent Cancer Hotspot Panel v2 (CHPv2).

METHODS

Evaluation Project: Study Design (Figure 1).

- ♦ Goal: to assess the concordance of variant detection between the Ion Torrent Cancer Hotspot Panel v2 (CHPv2) and Pillar SLIMamp™ Cancer Hotspot Panel.
- ♦ **Samples:** a total of 178 samples were blinded at DHMC and sent to Pillar Biosciences.
- ♦ Library Preparation: DNA input and library quantification
 - DNA input: 16 ng- 101 ng (samples were not normalized).
 - Library quantification: 6.5 nM 126.0 nM.
- ♦ **Sequencing:** all samples were normalized to 4 nM, pooled and sequenced on an Illumina MiSeq, MiSeqDx or NextSeq500.
- ♦ Data Analysis: Pillar PiVAT software pipeline was used for analysis (allelic frequency (AF)>2.5%).
- ♦ Data comparison: files were sent to DHMC for data comparison.

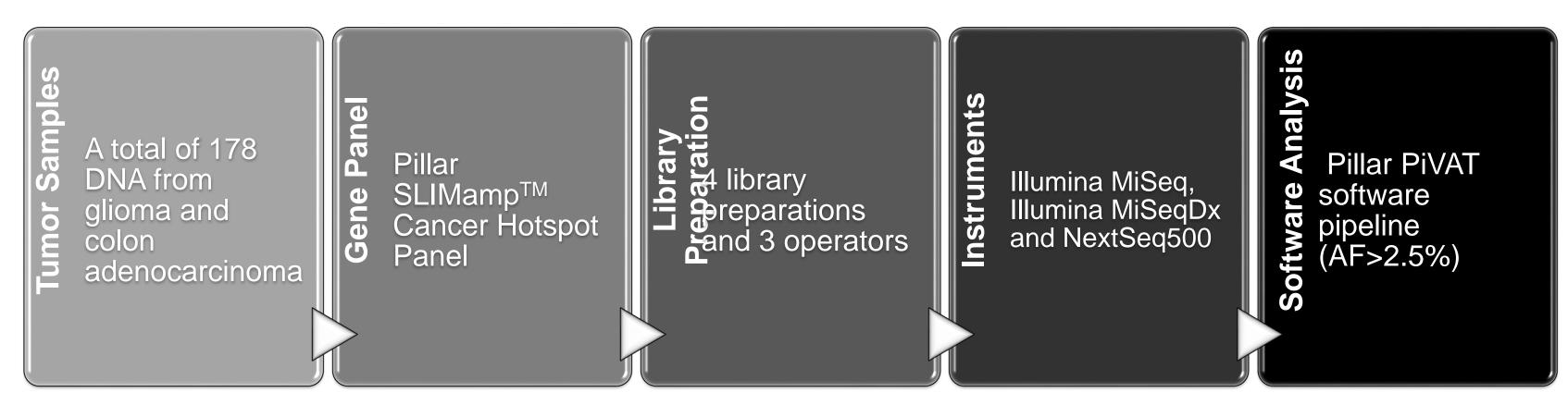
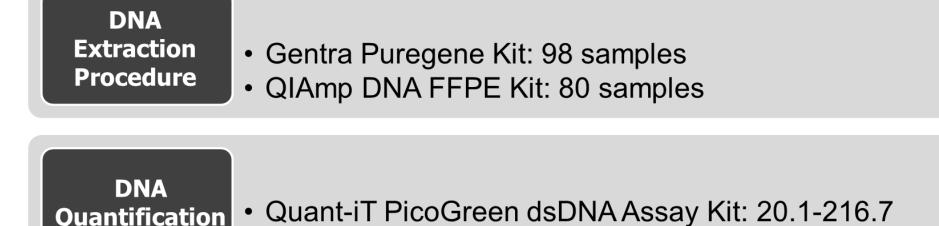



Figure 1. Evaluation Project: study design.

METHODS cont.

Samples.

- ♦ Clinical: 146 colon adenocarcinoma and 32 glioma.
- ♦ Sample information (Figure 2): DNA extraction procedure, DNA quantification and DNA quality.
- ♦ NGS. All samples were previously sequenced at DHMC using the CHPv2 panel.

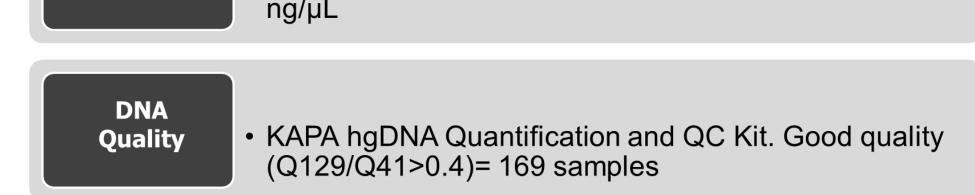


Figure 2. Detailed information of each sample prior to library preparation.

Ion Torrent Hotspot Cancer Panel v2 (CHPv2).

- ♦ Panel: 50 genes with 207 amplicons (Table 1), which includes single nucleotide variants (SNVs) and insertions/deletions (INDELs)
- ♦ **DNA input:** 10 ng FFPE gDNA
- ♦ Workflow: 3 days library preparation + sequencing
- ♦ Data analysis: Torrent Server 4.0.2 and Golden Helix Software 8.3.4

Pillar SLIMampTM Cancer Hotspot Panel.

- ♦ Panel: 56 genes with 251 amplicons (Table 2), which includes single nucleotide variants (SNVs), insertions/deletions (INDELs), splice variants and CNVs
- ♦ **DNA input:** 5 ng FFPE gDNA
- ♦ Workflow: 2 days library preparation + sequencing
- ♦ Data analysis: Pillar PiVAT software pipeline

Table 1. Gene list of the Ion Torrent Hotspot Cancer Panel v2 (CHPv2)

Ion Torre	ent Hotspo	ot Cancer	Panel v2 ((CHPv2)
ABL1	EGFR	GNAQ	KRAS	PTPN11
AKT1	ERBB2	GNAS	MET	RB1
ALK	ERBB4	HNF1A	MLH1	RET
APC	EZH2	HRAS	MPL	SMAD4
ATM	FBXW7	IDH1	NOTCH1	SMARCB1
BRAF	FGFR1	IDH2	NPM1	SMO
CDH1	FGFR2	JAK2	NRAS	SRC
CDKN2A	FGFR3	JAK3	PDGFRA	STK11
CSF1R	FLT3	KDR	PIK3CA	TP53
CTNNB1	GNA11	KIT	PTEN	VHL

Table 2. Gene list of the Pillar SLIMamp TM Cancer Hotspot Panel.

Pillar SLI	Mamp TM Ca	ncer Hotsp	ot Panel.			
ABL1	EZH2	JAK2	PIK3CA			
AKT1	FBXW7	JAK3	PTEN			
ALK	FGFR1	KDR	PTPN11			
APC	FGFR2	KIT	RAC1			
ATM	FGFR3	KRAS	RB1			
BRAF	FLT3	MAP2K1	RET			
CDH1	FOXL2	MET	ROS1			
CDKN2A	GNA11	MLH1	SMAD4			
CSF1R	GNAQ	MPL	SMARCB1			
CTNNB1	GNAS	NOTCH1	SMO			
DDR2	HNF1A	NPM1	SRC			
EGFR	HRAS	NRAS	STK11			
ERBB2	IDH1	NTRK1	TP53			
ERBB4	IDH2	PDGFRA	VHL			

RESULTS

CHPv2 vs Pillar SLIMampTM Cancer HotSpot Panel (only overlapping regions)

- ♦ Targeted region: a total of 15,049 bp overlap between both panels (Figure 3).
- Library yield (nM): samples with higher quality
 Q129/Q41≥0.6 had library quantification higher than 50 nM.

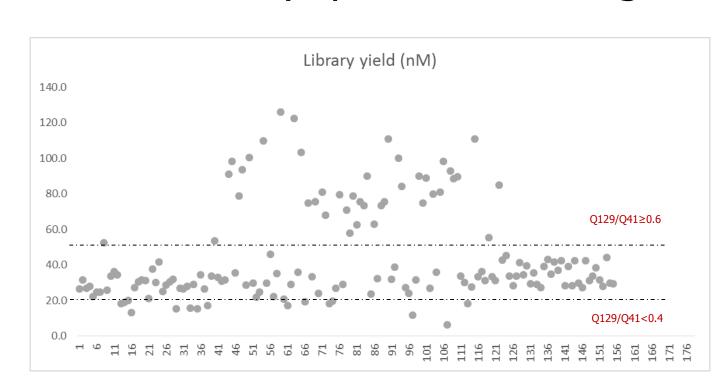


Figure 4. Library yield vs DNA quality.

- ♦ SNVs and INDELs calls with AF> 5% only: 100% of concordance between both panels (15/178 samples).
- ♦ Variant Allelic Frequency: high degree of similarity between both panels.

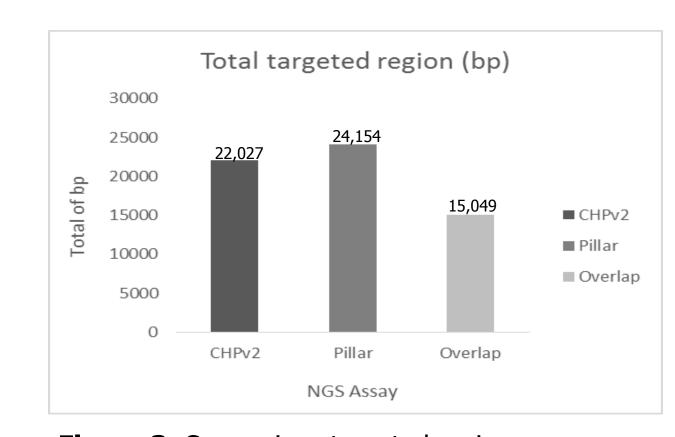


Figure 3. Comparison targeted region coverage.

Table 3. AF and Variant types detected by each panel.

CHPv2	Pillar SLIMamp [™]					
Panel	Cancer HotSpot					
Allelic Frequency						
> 5%	> 2.5%					
	1					
	Panel					

^{1.} Five samples previously screened for CNVs using array. NGS panel had concordant results with 3 samples (discordant results were due to panel coverage).

CONCLUSIONS

♦ The **Pillar SLIMampTM Cancer Hotspot Panel** allows for the interrogation of a diverse set of solid tumor samples and a high degree of sample pooling on a MiSeq instrument, providing quick turn-around time from extracted DNA to data analysis.